共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
姬联涛;荆岫岩;周迪;王璞;刘昊;何鸿翔;李超顺 《水电能源科学》2024,(6):184-187+157
水电机组故障诊断依赖于振动监测信号,但信号中存在的噪声会干扰诊断模型对有效特征的提取,降低模型精度。对此,提出一种联合变分模态分解和小波阈值降噪的水电机组故障诊断方法。首先对水电机组振动监测信号进行变分模态分解,得到若干低、中、高频分量。其次,对高频分量进行小波变换并舍弃小波系数低于设置阈值的部分,中低频分量保留。最后,构建基于注意力机制的多通道深度卷积神经网络模型,将分量作为各通道的输入信号,实现水电机组的状态识别。以水电机组实测振动信号作为样本,设计多组对比试验,结果表明该方法可有效滤除水电机组振动监测信号中的噪声,提高诊断模型的识别准确率。 相似文献
3.
针对水电机组空蚀信号非平稳和非线性的特点,提出一种基于经验模态分解-BP神经网络(EMDBPNN)的空蚀故障混合特征提取与分类方法。首先对空蚀信号进行经验模态分解,得到一系列的本征模态函数(IMFs),提取各IMFs分量的能量特征和奇异值特征,同时提取常规的时域和频域特征,构建混合特征向量;然后将此向量作为神经网络的输入,对水电机组空载工况、导叶30%开度和满负荷运行等三种工况下的空蚀数据进行识别分类。试验结果显示,该方法能够对水电机组空蚀故障进行准确诊断,具有较强的工程应用价值。 相似文献
4.
5.
针对水电机组故障具有渐变性等特征,提出了一种基于总体平均经验模态分解(EEMD)和优化支持向量机(SVM)相结合的水电机组故障智能诊断方法。利用EEMD能对机组振动信号进行自适应分解成若干本征模式分量(IMF),并能有效抑制经典经验模式分解(EMD)的端点效应以及模式混叠现象。从IMF分量中提取出来的能量特征作为输入建立优化SVM,以此来判断机组的故障状态。通过实例分析表明:建立的混合智能诊断方法的分类正确率高,能有效诊断机组存在的故障。 相似文献
6.
7.
针对现有基于时域特征的高压油泵故障诊断准确率低的问题,笔者提出一种参数优化变分模态分解(VMD)算法和散布熵的特征提取方法,并采用支持向量机(SVM)进行故障诊断.首先,基于对高压油泵工作原理及典型故障的分析,利用AMESim平台搭建高压油泵仿真模型进行故障模拟和信号采集.然后,针对VMD效果受限于分解个数和惩罚因子选取的问题,采用改进灰狼优化(IGWO)算法对VMD进行参数寻优.通过计算各模态的散布熵值形成故障特征向量,最后,采用SVM对故障特征向量进行训练和诊断,实现高压油泵的故障诊断.该方法的故障诊断准确率可达到95%以上,能有效地实现高压油泵故障诊断. 相似文献
8.
鉴于有效预测振动信号可为抽水蓄能机组的性能劣化及故障等预警提供重要依据的问题,提出一种基于变分模态分解(VMD)与门控循环单元神经网络(GRU)的抽水蓄能机组振动信号预测方法。首先,对原始的振动信号进行VMD分解,得到一组相对平稳且频率不同的本征模态函数(IMF),以减少不同频率信息间的相互影响;然后,针对各子序列分别构建GRU时序预测模型,并采用自适应矩估计算法(Adam)对各分量GRU预测模型进行优化;最后叠加各子序列预测结果得到抽蓄机组振动信号的预测值,并构建ANN、GRU、VMD-SVM、VMD-ANN 4种预测模型进行对比。试验结果表明,与所构建的4种预测模型相比,VMD-GRU预测模型在有效性及预测精度等方面效果显著,在实际工程中非常具有应用意义。 相似文献
9.
王淑青;罗平章;胡文庆;柯洋洋;张家豪 《水电能源科学》2024,(6):198-202+216
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 相似文献
10.
11.
12.
针对汽轮机运行过程中的非平稳性和多分量性振动故障信号,提出一种基于变分模态分解相对熵云模型和优化最小二乘支持向量机(LSSVM)的汽轮机振动故障诊断方法。首先,利用变分模态分解按照预设尺度将故障信号分解为K个模态分量,根据各模态分量与原始信号的相对熵大小去除伪分量,提取最佳分量并将其输入云模型,采用逆向云发生器提取特征向量。然后使用改进果蝇优化算法动态调整搜索步长搜寻影响LSSVM识别精度的超参数最佳组合,最后将特征向量输入参数优化后的LSSVM进行故障识别,并与采用经验模态分解相对熵云模型和集合经验模态分解相对熵云模型的LSSVM识别结果进行了对比。结果表明:所提方法优于传统的信号分解方法,对汽轮机振动故障类别具有很高的识别准确率。 相似文献
13.
14.
15.
针对水电机组运行状态趋势预测的问题,提出了一种基于能量熵重构(EER)与支持向量回归(SVR)的混合预测模型。先针对复杂非平稳监测信号,利用快速集成经验模态分解(FEEMD)算法将其分解为多个本征模态函数(IMFs)分量和单个残余分量;然后基于能量熵(EE)理论对各分量进行重构,以有效降低分量的复杂度;最后,将生成的重构本征模态函数(RIMFs)作为SVR的输入,训练模型参数得到最优的SVR,用于预测机组状态发展趋势。与实例对比分析表明,所提混合预测模型具有较高的预测精度,为机组运维策略的制定提供了一定的指导。 相似文献
16.
为构建更为直观显示水电机组各类型故障之间因果关系的水电机组故障诊断模型,提出一种基于可能性原理的模糊认知贝叶斯网络建模方法,通过专家经验与数据学习构建普通贝叶斯网络与条件概率表,利用条件概率表发现变量间的概率因果关系,并根据不确定性原理将概率因果关系转化为模糊因果关系,最后确定因果关系标志符号,并完成模型的构建。通过构建水电机组故障诊断模型对模糊认知贝叶斯网络模型进行了有效验证,结果表明该模型能直观反映水电机组各类型故障之间的因果关系。 相似文献
17.
18.
为解决多元变分模态分解(MVMD)经验参数设置对分解结果的影响,提出一种新的自适应多元变分模态分解(AMVMD)方法并将其应用于轴承的故障诊断方面。首先,将最小平均包络熵(MAEE)作为适应度函数,采用灰狼算法(GWO)寻求MVMD参数的最优解,并按照最优参数对原始信号进行分解。然后,计算各本征模态分量(IMF分量)的样本熵和相关系数,选取最佳模态进行信号重构。最后,通过Teager能量算子(TEO)对重构信号进行解调,以增强微弱的瞬态冲击成分并识别特征频率。结果表明:将所提出的AMVMD与TEO相结合可以有效减少信号噪声,提取轴承的故障特征。 相似文献
19.