首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of integrated nonlinear viscoelastic contact mechanics, a nonlinear finite element model is developed to predict and analyze the quasistatic response of nanoindentation problems of an elastically-layered viscoelastic materials considering the surface elasticity effects. Effects of surface energy are accounted for by employing the Gurtin–Murdoch continuum model for surface elasticity. The linear viscoelastic response is modeled by the Schapery’s creep model with a Prony’s series to express the transient component in the creep compliance. The viscoelastic constitutive equations are cast into a recursive form that needs only the previous time increment rather than the entire strain history. To satisfy the contact constraints exactly, the Lagrange multiplier method is adopted to enforce the contact conditions into the system. The equilibrium indentation configuration is obtained through the Newton–Raphson iterative procedure. The developed model is verified then applied to investigate the quasistatic nanoindentation response of two different indentation problems with different geometry and loading conditions. Results show the significant effects of surface energy and viscoelasticity on the quasistatic nanoindentation response.  相似文献   

2.
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material’s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions.  相似文献   

3.
Due to the viscoelastic behavior of polymers mechanical properties are strongly affected by the loading history. To obtain the time-dependent Poisson’s ratio without further data manipulation, stress relaxation tests have to be carried out. Only few results for viscoelastic materials have been published to date, but the theory of Poisson’s ratio in the framework of linear viscoelasticity has received some attention with respect to loading histories other than relaxation, i.e. creep and constant rate of strain tests.The main objective of this work is to compare the potential of different testing methods to determine Poisson’s ratio. Transverse and axial strain have been measured in relaxation tests, creep experiments and displacement rate controlled tensile tests. Relaxation tests are evaluated accounting for the finite loading time and the results are compared with those of tensile creep and displacement rate controlled tensile tests. An optimization based method to determine linear viscoelastic material functions developed previously is applied to calculate Poisson’s ratio.  相似文献   

4.
In the present work, the effect of loading rate on indentation creep was studied. Indentation creep tests were conducted on epoxy resin to provide creep deformation under constant load, contact creep compliance and cut-off time using a Berkovich indenter. Several loading rates, ranging from 0.25 to 6 mN/s, were used to perform the tests. The results showed that there is a strong loading rate dependence on creep response of the epoxy resin under indentation. Contact creep compliance and cut-off time decreased with increasing loading rate. In contrast, an increase in reduced modulus, hardness, displacement variation and contact creep compliance variation during the holding time was noticed. The loading rate sensitivity on creep response under indentation can be attributed to viscoelastic response prior to holding segment and strain rate effect on yield stress of the epoxy resin. This study provided an insight to understand the loading rate dependence on creep behaviour of epoxy resin under indentation.  相似文献   

5.
In this paper, the creep behavior of molybdenum disulphide (MoS2) filled polyamide 66 composite was investigated through sharp indentation at room temperature. Two types of indentation creep test, the 3-step indentation test, and the 5-step indentation test were considered in order to explore whether the measured creep response is mainly viscoelastic or includes a significant contribution from the plastic deformation developed during the loading phase. The experimental indentation creep data were analyzed within an analytical framework based on the hereditary integral operator for the ramp creep and a viscoelastic–plastic (VEP) model in order to determine the indentation creep compliance function including the short- and long-time modulus. The equivalent shear modulus calculated from the creep compliance function was compared to the indentation plane strain modulus derived from the initial slope of the unloading curve in order to investigate the validity of the Oliver and Pharr method.  相似文献   

6.
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery’s nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.  相似文献   

7.
Abstract: The aim of this paper was to develop a biomechanical model to reproduce the viscoelastic behaviour of the material of the bovine temporomandibular joint (TMJ) disc, as a substitute material to be applied in subsequent experimental studies of possible human TMJ disorders. As the mechanical properties of the disc change due to different factors, this study is focussed on evaluating its viscoelastic response under compression in stress–relaxation, creep and cycling loading tests, using an equipment that allows us to simulate the real function conditions of the material in a liquid medium at 37 °C. In order to fit the data obtained from the relaxation and creep tests, generalised Maxwell and Kelvin models of eight terms are proposed, leading to Prony’s series of practical interest for subsequent numerical calculations.  相似文献   

8.
A finite element analysis is developed for treating nonlinear viscoelastic response of laminated composites. The analysis uses an eight-node layered shell element. The transient creep compliance in the viscoelastic model is represented as an exponential series plus a steady-flow term. This allows for a simplification of the numerical procedure for handling hereditary effects. Calculations are performed to study the time-dependent redistribution of stress in a flat plate under uniform pressure, a spherical cap under a point load, and a cylindrical shell pinched between two concentrated forces.  相似文献   

9.
In this paper, creep buckling and post-buckling of a hybrid laminated viscoelastic functionally graded material (FGM) cylindrical shell under in-plane loading are investigated. Considering the high-order transverse shear deformation and geometric nonlinear theory, the von Karman geometric relation of the hybrid laminated viscoelastic FGM cylindrical shell with initial deflection is established. Based on the Donnell theory, elastic piezoelectric theory and Boltzmann superposition principle, nonlinear creep governing equations of the hybrid laminated viscoelastic FGM cylindrical shell under in-plane loading are derived. By means of the finite difference method and the Newton–Newmark method, the problem for creep buckling and post-buckling of the laminated shell’s structure is solved. Numerical results are presented to show effects of geometric parameters, power law index and loading on creep buckling and post-buckling of the hybrid laminated viscoelastic FGM cylindrical shell.  相似文献   

10.
A micromechanical finite element (FE) framework was developed to predict the viscoelastic properties (complex modulus and creep stiffness) of the asphalt mixtures. The two-dimensional (2D) microstructure of an asphalt mixture was obtained from the scanned image. In the mixture microstructure, irregular aggregates and sand mastic were divided into different subdomains. The FE mesh was generated within each aggregate and mastic subdomain. The aggregate and mastic elements share nodes on the aggregate boundaries for deformation connectivity. Then the viscoelastic mastic with specified properties was incorporated with elastic aggregates to predict the viscoelastic properties of asphalt mixtures. The viscoelastic sand mastic and elastic aggregate properties were inputted into micromechanical FE models. The FE simulation was conducted on a computational sample to predict complex (dynamic) modulus and creep stiffness. The complex modulus predictions have good correlations with laboratory uniaxial compression test under a range of loading frequencies. The creep stiffness prediction over a period of reduced time yields favorable comparison with specimen test data. These comparison results indicate that this micromechanical model is capable of predicting the viscoelastic mixture behavior based on ingredient properties.  相似文献   

11.
岩石材料的粘弹性和粘塑性变形是与时间相关的能量耗散行为。在Rice不可逆内变量热力学框架下,引入两组内变量分别用来描述在粘弹性和粘塑性变形过程中材料的内部结构调整。通过给定比余能的具体形式和内变量的演化方程,推导出内变量粘弹-粘塑性本构方程。粘弹性本构方程具有普遍性,能涵盖Kelvin-Voigt和Poynting-Thomson在内的经典粘弹性模型的本构方程。并指出热力学力与应力呈线性关系是组合元件模型为线性模型的根本原因。粘塑性本构方程能较好地刻画岩石材料在粘塑性变形过程中的硬化现象。对模拟岩石的模型相似材料进行单轴加卸载蠕变试验,将蠕变过程中的粘弹性和粘塑性变形分离并根据试验数据对本构方程的材料参数进行辨识。试验数据和理论曲线对比结果表明该文提出的本构方程能很好地模拟材料的蠕变行为。该类型的本构方程能为岩石工程的长期稳定性的预测、评价以及加固分析提供基础。  相似文献   

12.
A nonlinear constitutive relationship was developed for asphalt binders. Two binders, one polymer modified and one unmodified, were tested in shear using creep and recovery loading. Five different stress levels and four loading times were considered, to capture the response of the binders in the linear and nonlinear viscoelastic range. The creep response of the binders was successfully modeled with a nonlinear power law function. The modified superposition principle was unable to predict the recovery phase of the testing data. A nonlinear constitutive relationship composed of a nonlinear viscous part plus a linear viscoelastic part was developed. The constitutive relationships successfully predicted the binders’ response in creep and recovery. The predictions of the constitutive relationships matched accurately the response of the binders subjected to the Multiple Stress Creep and Recovery loading pattern.  相似文献   

13.
Conventional approaches to model fatigue failure are based on a characterization of the lifetime as a function of the loading amplitude. The Wöhler diagram in combination with a linear damage accumulation assumption predicts the lifetime for different loading regimes. Using this phenomenological approach, the evolution of damage and inelastic strains and a redistribution of stresses cannot be modeled. The gradual degration of the material is assumed to not alter the stress state. Using the Palmgren–Miner rule for damage accumulation, order effects resulting from the non-linear response are generally neglected.In this work, a constitutive model for concrete using continuum damage mechanics is developed. The model includes rate-dependent effects and realistically reproduces gradual performance degradation of normal strength concrete under compressive static, creep and cyclic loading in a unified framework. The damage evolution is driven by inelastic deformations and captures strain rate effects observed experimentally. Implementation details are discussed. Finally, the model is validated by comparing simulation and experimental data for creep, fatigue and triaxial compression.  相似文献   

14.
The displacement based finite element model of a general third-order beam theory is developed to study the quasi-static behavior of viscoelastic rectangular orthotropic beams. The mechanical properties are considered to be linear viscoelastic in nature with a scope to undergo von Kármán nonlinear geometric deformations. A differential constitutive law is developed for an orthotropic linear viscoelastic beam under the assumptions of plane-stress. The fully discretized finite element equations are obtained by approximating the convolution integrals using a trapezoidal rule. A two-point recurrence scheme is developed that necessitates storage of data from the previous time step only, and not from the entire deformation history. Full integration is used to evaluate all the stiffness terms using spectral/hp lagrange polynomials. The Newton iterative scheme is employed to enhance the rate of convergence of the nonlinear finite element equations. Numerical examples are presented to study the viscoelastic phenomena like creep, cyclic creep and recovery for thick and thin beams using classical mechanical analogues like generalized n-parameter Kelvin-Voigt solids and Maxwell solids.  相似文献   

15.

We consider the nonlinear viscoelastic–viscoplastic behavior of adhesives. We develop a one-dimensional nonlinear model by combining Schapery’s nonlinear single integral model and Perzyna’s viscoplastic model. The viscoplastic strain was solved iteratively using the von Mises yield criterion and nonlinear kinematic hardening. The combined viscoelastic–viscoplastic model was solved using Newton’s iteration and implemented into a finite element model. The model was calibrated using creep-recovery data from bulk adhesives and verified from the cyclic behavior of the bulk adhesives. The finite element model results agreed with experimental creep and cyclic responses, including recoverable and permanent strain after load removal. Although the contribution of the viscoplastic strain was small, both viscoplastic and viscoelastic components of strain response were required to describe the adhesive creep and cyclic response.

  相似文献   

16.
Lu  H.  Wang  B.  Ma  J.  Huang  G.  Viswanathan  H. 《Mechanics of Time-Dependent Materials》2003,7(3-4):189-207
Methods to measure the local surface creep compliance of time-dependent materials are proposedand validated in the regime of linear viscoelasticity using nanoindentation. Two different bulkpolymers, Polymethyl Methacrylate (PMMA) and Polycarbonate (PC), were employed in thevalidation study; though it is expected that the methods developed herein can be applied for verysmall amounts of materials and heterogeneous materials. Both Berkovich and sphericalnanoindenters were used to indent into the material in nanoindentation tests. Two loading historieswere used: (1) a ramp loading history, in which the indentation load and displacement wererecorded; and (2) a step loading history, in which the indentation displacement was recorded as afunction of time. Analysis of the linearly viscoelastic material response was performed to measurethe creep compliance functions for the two materials under two different loading histories. The limitof linearly viscoelastic behavior for each of the two materials was determined through theobservation of the indent impression recovery after complete unloading; it is postulated that linearityis achieved if indentation impression is fully recovered after unloading. Results fromnanoindentation tests generally agree well with data from conventional tension and shear tests. It hasthus validated the techniques of measuring linear creep compliance in the glassy state usingnanoindentation with the Berkovich and spherical indenter tips.  相似文献   

17.
In this paper, the coincident method proposed previously is applied to model the four-point-bending creep experiments conducted at the Cooperative Research Centre for Advanced Composite Structures (CRC-ACS) on carbon-epoxy composite laminates. A parameter identification methodology is first developed to determine the elastic and viscoelastic material models to be used for a coincident element. Simulations are then conducted to model the flexural creep response of the composite laminates under different loading and temperature conditions. The predicted results are in reasonably good agreement with those obtained by experiments. It is demonstrated that the coincident element method is a relatively simple and useful tool for modelling orthotropic and viscoelastic response of laminated composites by using a finite element package that only supports isotropic viscoelastic material models.  相似文献   

18.
There are many machine components made of polymeric materials, such as gears, which are subjected to cyclic loading conditions. To design such components, it is necessary to arrive at a suitable mathematical model that can describe the mechanical response of polymeric materials. In this paper, we derive a mathematical model for rate-type solids using thermodynamical framework developed by Rajagopal and Srinivasa (K.R. Rajagopal, A.R. Srinivasa, A thermodynamic frame work for rate type fluid model, Journal of Non-Newtonian Fluid Mechanics 88 (2000) 207-227) (also see Section 5 of Kannan and Rajagopal (K. Kannan, K.R. Rajagopal, A thermomechanical framework for the transition of a viscoelastic liquid to a viscoelastic solid, Mathematics and Mechanics of Solids 9 (2004) 37-59)), which was used by Rajagopal and Srinivasa to derive a mathematical model for isotropic, rate-type liquids. Uniaxial cyclic loading and stress relaxation experiments were conducted. The predictions of the model agreed well with the experimental data.  相似文献   

19.
The viscoelastic creep response of flexural beams and beam-columns made with functionally graded materials is numerically investigated. The paper highlights the challenges associated with the modeling and analysis of such structures, and presents a nonlinear theoretical model for their bending and creep buckling analysis. The model accounts for the viscoelasticity of the materials using differential-type constitutive relations that are based on the linear Boltzmann’s principle of superposition. The model is general in terms of its ability to deal with any material volume faction distribution through the depth of the beam, and with different linear viscoelastic laws, boundary conditions, and loading schemes. The governing equations are solved through time stepping numerical integration, which yields an exponential algorithm following the expansion of the relaxation function into a Dirichlet series. A numerical study that examines the capabilities of the model and quantifies the creep response of functionally graded beam-columns is presented, with special focus on the stresses and strains redistribution over time and on the creep buckling response. The results show that the creep response of such structures can be strongly nonlinear due to the variation of the viscoelastic properties through the depth, along with unique phenomena that are not observed in homogenous structures.  相似文献   

20.
Polymer foam cored sandwich beams are widely used in load-bearing components due to their high strength to weight ratio. To improve the reliability in using sandwich beams, it is essential to understand their long-term creep response in terms of variation of stresses and deformations with time under external mechanical and environmental stimuli. This paper presents an analytical model for investigating the creep response of sandwich beams made with a viscoelastic soft core, including the effect of the variable ambient humidity under the sustained load and its influence on the creep behavior. The model is based on a high-order viscoelastic structural modeling. The soft core is modeled as a viscoelastic material using differential-type constitutive relations that are based on the linear Boltzman’s principle of superposition and accounting for the deformability of the core in shear and through its thickness. Several numerical examples are presented in order to show the capability of the model and to investigate the effect of moisture on the creep behavior of sandwich beams. Finite element simulations of the creep response of sandwich beams are also performed using ABAQUS software to validate the proposed theoretical model. The results show the concentrations of shear and transverse normal stresses near the edges and their variation in time and with the change of humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号