首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
The Generalized Differential Quadrature (GDQ) Method is applied to study laminated composite degenerate shell panels such as rectangular and annular plates. The theoretical treatment is maintained general in order to expose in a unique way the procedure adopted to obtain the stress profiles through the thickness of plates without specifying the equations for rectangular and annular plates. By simply imposing some geometrical relations the equations governing the problem of plates under consideration, that are degenerate shells, are inferred from the theory of shells of revolution. The mechanical model is based on the so called First-order Shear Deformation Theory (FSDT) deduced from the three-dimensional theory in order to analyse the above moderately thick structural elements. The solution is given in terms of generalized displacement components of points lying on the middle surface of the plate. After the solution of the fundamental system of equations in terms of displacements and rotations, the generalized strains and stress resultants are evaluated by applying the Differential Quadrature rule to the generalized displacements. The transverse shear and normal stress profiles through the laminate thickness are reconstructed a posteriori by using local three-dimensional elasticity equilibrium equations. No preliminary recovery or regularization procedure on the extensional and flexural strain fields is needed when the Differential Quadrature technique is used. By using GDQ procedure through the thickness, the reconstruction procedure needs only to be corrected to properly account for the boundary equilibrium conditions. In order to verify the accuracy of the present method, GDQ results are compared with the ones obtained with semi-analytical formulations and with 3D finite element methods. Stresses of several composite plates are evaluated. Very good agreement is observed without using mixed formulations and higher order kinematical models. Various examples of stress profiles for rectangular and annular plate elements are presented to illustrate the validity and the accuracy of GDQ method.  相似文献   

2.
A boundary element method is developed for the dynamic analysis of plates with variable thickness. The plate may have arbitrary shape and its boundary may be subjected to any type of boundary conditions. The non-uniform thickness of the plate is an arbitrary function of the coordinates x, y. Both free and forced vibrations are considered. The method utilizes the fundamental solution of the static problem of the plate with constant thickness to establish the integral representation for the deflection and, subsequently, by employing an efficient Gauss integration technique for domain integrals the equation of motion is derived as a discrete system of simultaneous ordinary differential equations with respect to the deflections at the Gauss integration nodal points. The equation of motion can be solved using the known techniques for multi-degrees of freedom systems. Numerical results are presented to illustrate the method and to demonstrate its efficiency and accuracy.  相似文献   

3.
Plates governed by Kirchhoff's equation have been analysed by the boundary integral equation method using the fundamental solution of the biharmonic equation. In the case of supported plates, the boundary conditions permit the uncoupling of the field equation into two harmonic equations that originate, due to the nature of the fundamental solution, easier integration kernels and a simpler system of equations. The calculation of bending and twisting moments and transverse shear force can be formed, combining derivatives of the integral equation which defines the expression of the deflection on any point of the plate. The uncoupling of the biharmonic equation into two Poisson's equations involves the discretization of the domain of the studied problems. Nevertheless, the unknown quantity of the problem does not appear in the domain integrations for which a refined discretization is unnecessary. In the paper, however, a numerical alternative is considered to express the domain integral by means of boundary integrals. In this way, we need only discretize the boundary of the plate, making it necessary to solve a supplementary system of equations in order to calculate the coefficients of the approximation carried out.  相似文献   

4.
A general and systematic discussion on the use of the operational method of Laplace transform for numerically solving complex time-dependent linear problems is presented. Application of Laplace transform with respect to time on the governing differential equations as well as the boundary and initial conditions of the problem reduces it to one independent of time, which is solved in the transform domain by any convenient numerical technique, such as the finite element method, the finite difference method or the boundary integral equation method. Finally, the time domain solution is obtained by a numerical inversion of the transformed solution. Eight existing methods of numerical inversion of the Laplace transform are systematically discussed with respect to their use, range of applicability, accuracy and computational efficiency on the basis of some framework vibration problems. Other applications of the Laplace transform method in conjunction with the finite element method or the boundary integral equation method in the areas of earthquake dynamic response of frameworks, thermaliy induced beam vibrations, forced vibrations of cylindrical shells, dynamic stress concentrations around holes in plates and viscoelastic stress analysis are also briefly described to demonstrate the generality and advantages of the method against other known methods.  相似文献   

5.
An analysis is presented for the effect of hydrostatic peripheral loading on the free axisymmetric vibrations of functionally graded moderately thick circular plates on the basis of first-order shear deformation theory. The mechanical properties of the plate material are supposed to vary according to a power-law in both the radial and transverse directions. The numerical solution of the governing differential equation derived by using Hamilton's energy principle for such simply supported and clamped boundary conditions has been obtained employing the harmonic differential quadrature method choosing zeros of Chebyshev–Gauss–Lobatto as the grid points. The effect of different parameters has been analyzed on the frequency parameter for the first three modes of vibration. The critical buckling loads for both the plates have been computed by putting the frequencies to zero. Three-dimensional mode shapes for particular plate have been plotted. Obtained results have been compared.  相似文献   

6.
基于经典薄板理论和Hamilton原理研究温度影响下Winkler-Pasternak弹性地基上多孔功能梯度材料(FGM)矩形板的自由振动特性。采用Voigt混合幂率模型和孔隙任意分布模型来表征多孔FGM矩形板的材料属性,并考虑多孔FGM矩形板内部均匀温升和材料具有温度依赖特性;应用物理中面推导弹性地基上多孔FGM矩形板自由振动的控制微分方程并进行无量纲化;采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,引入典型的六种边界在MATLAB统一编程且保证计算精度一致,经过迭代收敛,求解出无量纲固有频率;通过算例研究了边界条件、梯度指数、升温、孔隙率、长宽比、边厚比、无量纲弹性刚度系数和无量纲剪切刚度系数对多孔FGM矩形板振动特性的影响。  相似文献   

7.
蔡松柏  王磊 《工程力学》2005,22(3):58-62
基于弹性板的几何非线性动力平衡方程,首先建立了一个坐标变换将梯形板域变换到正方形域,并将控制方程及其相应的边界条件变换到该正方形域内,然后通过引入中间变量将控制方程降阶,并利用问题的数学物理关系将边界条件进一步简化,在正方形域内对板的控制方程应用伽辽金法使问题变为时间域的非线性动力方程,最后应用参数摄动法得到了梯形板的几何非线性自由振动和动力响应,所得计算结果可供工程设计人员参考。  相似文献   

8.
This paper presents an analytical solution to the static analysis of functionally graded plates, using a recently developed higher order shear deformation theory (HSDT) and provides detailed comparisons with other HSDT’s available in the literature. These theories account for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surfaces, thus a shear correction factor is not required. The mechanical properties of the plates are assumed to vary in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded (FG) plate and boundary conditions are derived by employing the principle of virtual work. Navier-type analytical solution is obtained for FG plates subjected to transverse bi-sinusoidal and distributed loads for simply supported boundary conditions. Results are provided for thick to thin FG plates and for different volume fraction distributions. The accuracy of the present code is verified by comparing it with known results in the literature.  相似文献   

9.
This paper presents a new method for determining the natural frequencies and mode shapes for the free vibration of thin elastic plates using the boundary element and dual reciprocity methods. The solution to the plate's equation of motion is assumed to be of separable form. The problem is further simplified by using the fundamental solution of an infinite plate in the reciprocity theorem. Except for the inertia term, all domain integrals are transformed into boundary integrals using the reciprocity theorem. However, the inertia domain integral is evaluated in terms of the boundary nodes by using the dual reciprocity method. In this method, a set of interior points is selected and the deflection at these points is assumed to be a series of approximating functions. The reciprocity theorem is applied to reduce the domain integrals to a boundary integral. To evaluate the boundary integrals, the displacements and rotations are assumed to vary linearly along the boundary. The boundary integrals are discretized and evaluated numerically. The resulting matrix equations are significantly smaller than the finite element formulation for an equivalent problem. Mode shapes for the free vibration of circular and rectangular plates are obtained and compared with analytical and finite element results.  相似文献   

10.
A direct domain/boundary element method (D/BEM) for dynamic analysis of elastoplastic Reissner–Mindlin plates in bending is developed. Thus, effects of shear deformation and rotatory inertia are included in the formulation. The method employs the elastostatic fundamental solution of the problem resulting in both boundary and domain integrals due to inertia and inelasticity. Thus, a boundary as well as a domain space discretization by means of quadratic boundary and interior elements is utilized. By using an explicit time‐integration scheme employed on the incremental form of the matrix equation of motion, the history of the plate dynamic response can be obtained. Numerical results for the forced vibration of elastoplastic Reissner–Mindlin plates with smooth boundaries subjected to impulsive loading are presented for illustrating the proposed method and demonstrating its merits. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Summary Momentum and heat transfer from a continuous moving surface with an arbitrary surface velocity distribution and uniform surface temperature in a power-law fluid have been considered. Using a coordinate transformation, the boundary layer equations are reduced to a simple form. Modified Merk's series method has been used for momentum equation and universal function approach for energy equation. The resulting equations have been integrated numerically by using fourth-order Runge-Kutta method and method of continuation. Two types of plate velocity distributions are considered: (i) surface velocity proportional to positive power of distance from the slot, (ii) linearly stretched velocity distribution with nonzero slot velocity. It is found that the displacement thickness is much thicker for pseudoplastic fluids than for Newtonian and dilatant fluids for both cases. The local Nusselt number, obtained by the universal function method, has been compared with non-similar results. The results are in good agreement.  相似文献   

12.
直线型正交异性复合材料圆板的大挠度弯曲   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了复合材料直线型正交各向异性圆板的大挠度弯曲问题。首先通过周向刚度分析建立了非轴对称挠曲函数的形式:然后采用伽辽金法求解卡门方程, 其中应力函数是通过求解其非线性协调方程而精确得到的。由此,对周边固支而径向位移约束和自由两种边界条件求解了几种各向异性性质的复合材料园板;并讨论了非轴对称位移项引起的影响。计算结果表明, 非轴对称位移项的影响随着材料正交各向异性强度的增大而更加显著。当材料刚度系数比E1/E2=40时, 其对挠度的影响可达17%。   相似文献   

13.
We investigated the nonlinear vibrations of the coupled thickness-shear and flexural modes of quartz crystal plates with the nonlinear Mindlin plate equations, taking into consideration the kinematic and material nonlinearities. The nonlinear Mindlin plate equations for strongly coupled thickness- shear and flexural modes have been established by following Mindlin with the nonlinear constitutive relations and approximation procedures. Based on the long thickness-shear wave approximation and aided by corresponding linear solutions, the nonlinear equation of thickness-shear vibrations of quartz crystal plate has been solved by the combination of the Galerkin and homotopy analysis methods. The amplitude frequency relation we obtained showed that the nonlinear frequency of thickness-shear vibrations depends on the vibration amplitude, thickness, and length of plate, which is significantly different from the linear case. Numerical results from this study also indicated that neither kinematic nor material nonlinearities are the main factors in frequency shifts and performance fluctuation of the quartz crystal resonators we have observed. These efforts will result in applicable solution techniques for further studies of nonlinear effects of quartz plates under bias fields for the precise analysis and design of quartz crystal resonators.  相似文献   

14.
In the present article, an exact analytical solution for free vibration analysis of a moderately thick functionally graded (FG) annular sector plate is presented. Based on the first-order shear deformation plate theory, five coupled partial differential equations of motion are obtained without any simplification. Doing some mathematical manipulations, these highly coupled equations are converted into a sixth-order and a fourth-order decoupled partial differential equation. The decoupled equation are solved analytically for an FG annular sector plate with simply supported radial edges. The accurate natural frequencies of the FG annular sector plates with nine different boundary conditions are presented for several aspect ratios, some thickness/length ratios, different sector angles, and various power law indices. The results show that variations of the thickness, aspect ratio, sector angle, and boundary condition of the FG annular sector plates can change the vibration wave number. Also for an FG annular sector plate with one free edge, in opposite to the other boundary conditions, the natural frequency decreases with increasing the aspect ratio for small aspect ratios. Moreover, the mode shape contour plots are depicted for an FG annular sector plate with various boundary conditions. The accurate natural frequencies of FG annular sector plates are presented for the first time and can serve as a benchmark solution.  相似文献   

15.
Flexural vibrations of poroelastic plates   总被引:2,自引:0,他引:2  
Summary The governing equations of flexural vibrations of thin, fluid-saturated poroelastic plates are derived in detail. The plate material obeys Biot's theory of poroelasticity with one degree of porosity, while the plate theory employed is the one due to Kirchhoff. These governing equations are compared with the corresponding ones for thermoelastic plates and a poroelastic-thermoelastic analogy for flexural plate dynamics is established in the frequency domain. The dynamic response of a rectangular, simply supported, poroelastic plate to harmonic load is obtained analytically-numerically and the effects of inertia as well as of porosity and permeability on the response is assessed.  相似文献   

16.
Functionally graded plates under static and dynamic loads are investigated by the local integral equation method (LIEM) in this paper. Plate bending problem is described by the Reissner moderate thick plate theory. The governing equations for the functionally graded material with respect to the neutral plane are presented in the Laplace transform domain and therefore the in-plane and bending problems are uncoupled. Both isotropic and orthotropic material properties are considered. The local integral equation method is developed with the locally supported radial basis function (RBF) interpolation. As the closed forms of the local boundary integrals are obtained, there are no domain or boundary integrals to be calculated numerically in this approach. The solutions of the nodal values for the entire plate are obtained by solving a set of linear algebraic equation system with certain boundary conditions. Details of numerical procedures are presented and the accuracy and convergence characteristics of the method are examined. Several examples are presented for the functionally graded plates under static and dynamic loads and the accuracy for proposed method has been observed compared with 3D analytical solutions.  相似文献   

17.
In this paper a new method for the determination of flexural rigidities in orthotropic plate bending problems is presented. Boundary integral equations are established for the curvatures and the deflections inside the domain. By a simple discretization of the boundary and the inside plate, the elimination of curvatures is possible. If the fundamental solution of isotropic plates is chosen, then a linear system of n equations with three unknowns is obtained. These equations are provided by the knowledge of the deflections inside the plates, and the unknowns are the flexural rigidities. By using the least square method, the computation of these rigidities becomes easy.  相似文献   

18.
In this study, the nonlinear thermo-elastic bending analysis of a functionally graded carbon nanotube-reinforced composite plate resting on two parameter elastic foundations is investigated. The material properties of the carbon nanotube-reinforced composite plates are assumed to be temperature dependent and graded in the thickness direction. The nonlinear formulations are based on a first-order shear deformation plate theory and large deflection von Karman equations. A dynamic relaxation method is employed to solve the plate nonlinear partial differential equations. The effects of volume fraction of carbon nanotubes, thermal gradient, temperature dependency, elastic foundation, boundary conditions, plate width-to-thickness ratio, aspect ratio, and carbon nanotubes distribution are studied in detail.  相似文献   

19.
Tiegang Fang  Ji Zhang 《Acta Mechanica》2010,209(3-4):325-343
In this paper, the heat transfer over a shrinking sheet with mass transfer is studied. The flow is induced by a sheet shrinking with a linear velocity distribution from the slot. The fluid flow solution given by previous researchers is an exact solution of the whole Navier–Stokes equations. By ignoring the viscous dissipation terms, exact analytical solutions of the boundary layer energy equation were obtained for two cases including a prescribed power-law wall temperature case and a prescribed power-law wall heat flux case. The solutions were expressed by Kummer’s function. Closed-form solutions were found and presented for some special parameters. The effects of the Prandtl number, the wall mass transfer parameter, the power index on the wall heat flux, the wall temperature, and the temperature distribution in the fluids were investigated. The heat transfer problem for the algebraically decaying flow over a shrinking sheet was also studied and compared with the exponentially decaying flow profiles. It was found that the heat transfer over a shrinking sheet was significantly different from that of a stretching surface. Interesting and complicated heat transfer characteristics were observed for a positive power index value for both power-law wall temperature and power-law wall heat flux cases. Some solutions involving negative temperature values were observed and these solutions may not physically exist in a real word.  相似文献   

20.
Four integral identities for the fundamental solution of thin plate bending problems are presented in this paper. These identities can be derived by imposing rigid-body translation and rotation solutions to the two direct boundary integral equations (BIEs) for plate bending problems, or by integrating directly the governing equation for the fundamental solution. These integral identities can be used to develop weakly-singular and nonsingular forms of the BIEs for plate bending problems. They can also be employed to show the nonuniqueness of the solution of the hypersingular BIE for plates on multi-connected (or multiply-connected) domains. This nonuniqueness is shown for the first time in this paper. It is shown that the solution of the singular (deflection) BIE is unique, while the hypersingular (rotation) BIE can admit an arbitrary rigid-body translation term in the deflection solution, on the edge of a hole. However, since both the singular and hypersingular BIEs are required in solving a plate bending problem using the boundary element method (BEM), the BEM solution is always unique on edges of holes in plates on multi-connected domains. Numerical examples of plates with holes are presented to show the correctness and effectiveness of the BEM for multi-connected domain problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号