首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-phase La-substituted bismuth ferrite (Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\)) nanoparticles have been synthesized by thermal decomposition of a glyoxylate precursor. The crystal structure transition of BiFeO\(_{\mathbf {3}}\) from the rhombohedral (R3c) to the cubic \(\boldsymbol {Pm}\bar {\mathbf {3}}\boldsymbol {m}\) structure by La addition was confirmed by X-ray diffraction and infrared spectrometry methods. Furthermore, the Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\) nanoparticles showed a weak ferrimagnetism behaviour, while the magnetization increased from 0.18 to 0.48 emu g\(^{\mathbf {-1}}\) with La substitution. The Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\) nanoparticles exhibited strong absorption in the visible region with the optical band gap calculated from Tauc’s plot in the range of 2.19–2.15 eV. Furthermore, the effects of La substitution on the photodegradation of the methylene blue (MB) under visible light were also studied. The photodegradation of MB dye was enhanced from 64 to \(\sim \)99% with increasing La substitution from \(\boldsymbol {x =}\) 0 to 0.1 and then decreased to 8% for \(\boldsymbol {x =}\) 0.15.  相似文献   

2.
Fanger’s predicted mean vote (PMV) equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, air velocity, humidity activity level and clothing thermal resistance. PMV is a mathematical model of thermal comfort which was developed by Fanger. The uncertainty budget of the PMV equation was developed according to GUM in this study. An example is given for the uncertainty model of PMV in the exemplification section of the study. Sensitivity coefficients were derived from the PMV equation. Uncertainty budgets can be seen in the tables. A mathematical model of the sensitivity coefficients of \(T_{\mathrm{a}}\), \(h_{\mathrm{c}}\), \(T_{\mathrm{mrt}}\), \(T_{\mathrm{cl}}\), and \(P_{\mathrm{a}}\) is given in this study. And the uncertainty budgets for \(h_{\mathrm{c}}\), \(T_{\mathrm{cl}}\), and \(P_{\mathrm{a}}\) are given in this study.  相似文献   

3.
An effort was made to develop semiconductor oxide-based room temperature dilute magnetic semiconductor (DMS) thin films based on wide band gap and transparent host lattice with transition metal substitution. The Sn\(_{\mathrm {1}-x}\)Ni\(_{x}\textit {O}_{\mathrm {2}}\) (\(x\,= \mathrm {0.00, 0.03, 0.05, 0.07, 0.10, and \,0.15}\)) thin film samples were prepared on glass substrates by flash evaporation technique. All the samples were shown single phase crystalline rutile structure of host SnO\(_{\mathrm {2}}\) with dominant (110) orientation. The Ni substitution promotes reduction of average crystallite size in SnO\(_{\mathrm {2}}\) as evidenced from the reduction of crystallite size from 40 (SnO\(_{\mathrm {2}}\)) to 20 nm (Sn\(_{\mathrm {0.85}}\)Ni\(_{\mathrm {0.15}}\textit {O}_{\mathrm {2}}\)). In the energy dispersive spectra as well as X-ray photoelectron spectra of all the samples show, the chemical compositions are close to stoichiometric with noticeable oxygen deficiency. The crystalline films were formed by coalescence of oval-shaped polycrystalline particles of 100 nm size as evidenced from the electron micrographs. The energy band gap of DMS films decreases from 4 (SnO\(_{\mathrm {2}}\)) to 3.8 eV (x \(=\) 0.05) with increase of Ni content. The magnetic hysteresis loops of all the samples at room temperature show soft ferromagnetic nature except for SnO\(_{\mathrm {2}}\) film. The SnO\(_{\mathrm {2}}\) films show diamagnetic nature and it converts into ferromagnetic upon substitution of 3 % Sn\(^{\mathrm {4+}}\) by Ni\(^{\mathrm {2+}}\). The robust intrinsic ferromagnetism (saturation magnetization, 21 emu/cm\(^{\mathrm {3}}\)). Further increase of Ni content weakens ferromagnetic strength due to Ni-O antiferromagnetic interactions among the nearest neighbour Ni ions via O\(^{\mathrm {2-}}\) ions. The observed magnetic properties were best described by bound magnetic polarons model.  相似文献   

4.
Nonproportional (NP) strain hardening is caused by multiaxial load histories that induce variable principal stress/strain directions, activating cross-slip bands in several directions, due to the associated rotation of the maximum shear planes. This effect increases the strain-hardening behavior observed under proportional loads, those with fixed principal directions, and must be considered in multiaxial fatigue calculations, especially for materials with low stacking fault energy, such as austenitic stainless steels. NP hardening depends on the material and on the shape of the multiaxial load history path in a stress or strain diagram as well. It can be evaluated by a nonproportionality factor \({F_{\rm NP}}\) that varies from zero, for a proportional load history, to one, for a \({90^{\circ}}\) out-of-phase tension–torsion loading with the same normal and effective shear amplitudes. Originally, \({F_{\rm NP}}\) was estimated from the aspect ratio of a convex enclosure that contains the load history path, such as an ellipse or a prismatic enclosure, but such convex enclosure estimates can lead to poor predictions of \({F_{\rm NP}}\). Another approach consists on evaluating the shape of the six-dimensional (6D) path described by the six normal and shear components of the stress tensor, where the stress path contour is interpreted as a homogeneous wire with unit mass. The moment of inertia (MOI) tensor of this hypothetical wire is then calculated and used to estimate \({F_{\rm NP}}\). The use of 6D stress paths to estimate \({F_{\rm NP}}\) is questionable, since 6D formulations implicitly include the effect of the hydrostatic stress, while NP hardening is caused by the deviatoric plastic straining, not by stresses alone or by their hydrostatic component. In this work, the NP factor \({F_{\rm NP}}\) of a multiaxial load history is estimated from the eigenvalues of the MOI tensor of the plastic strain path, which are associated with the accumulated plastic straining in the principal directions defined by the associated eigenvectors. The presented formulation assumes free-surface conditions, but allows a surface pressure, covering the conditions of most critical points, which indeed are located on free surfaces. Experimental results for 14 different tension–torsion multiaxial histories prove the effectiveness of the proposed method.  相似文献   

5.
Three different thicknesses (50, 150 and 500 nm) Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC wafer as interlayer by electrospinning method and so, Au/(Zn-doped PVA)/n-4H-SiC metal–polymer–semiconductor structures were fabricated. The thickness effect of Zn-doped PVA on the dielectric constant (\(\varepsilon ^{\prime }\)), dielectric loss (\(\varepsilon ^{{\prime }{\prime }}\)), loss-tangent (tan \(\delta \)), real and imaginary parts of electric modulus (\(M^{\prime }\) and \(M^{{\prime }{\prime }})\) and ac electrical conductivity \((\sigma _{\mathrm{ac}})\) of them were analysed and compared using experimental capacitance (C) and conductance (\(G/\omega \)) data in the frequency range of 1–500 kHz at room temperature. According to these results, the values of \(\varepsilon ^{\prime }\) and \(\varepsilon ^{{\prime }{\prime }}\) decrease with increasing frequency almost exponentially, \(\sigma _{\mathrm{ac}}\) increases especially, at high frequencies. The \(M^{\prime }\) and \(M^{{\prime }{\prime }}\) values were obtained from the \(\varepsilon ^{\prime }\) and \(\varepsilon ^{{\prime }{\prime }}\) data and the \(M^{\prime }\) and \(M^{{\prime }{\prime }}\) vs. f plots were drawn for these structures. While the values of \(\varepsilon ^{\prime }\), \(\varepsilon ^{{\prime }{\prime }}\) and tan \(\delta \) increase with increasing interlayer thickness, the values of \(M^{\prime }\) and \(M^{{\prime }{\prime }}\) decrease with increasing interlayer thickness. The double logarithmic \(\sigma _{\mathrm{ac}}\) vs. f plots for each structure have two distinct linear regimes with different slopes, which correspond to low and high frequencies, respectively, and it is prominent that there exist two different conduction mechanisms. Obtained results were found as a strong function of frequency and interlayer thickness.  相似文献   

6.
The thermal conductivity data of 40 Canadian soils at dryness \((\lambda _{\mathrm{dry}})\) and at full saturation \((\lambda _{\mathrm{sat}})\) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\), was evaluated using a standard deviation (SD) formula. Among the mechanistic models applied to dry soils, the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by MaxRTCM \((\textit{SD} = \pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\), followed by de Vries and a series-parallel model (\(\hbox {S-}{\vert }{\vert }\)). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C–B) and Chen’s equation), the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by the C–B model \((\pm ~0.022\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\). Among the empirical equations, the top \(\lambda _{\mathrm{dry}}\) estimates were given by CDry-40 \((\pm ~0.021\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) and \(\pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) for18-coarse and 22-fine soils, respectively). In addition, \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\) models were applied to the \(\lambda _{\mathrm{sat}}\) database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest \(\lambda _{\mathrm{dry}}\) estimates for the 40 Canadian soils as well as the 21 soils. The best \(\lambda _{\mathrm{sat}}\) estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the \(\hbox {S-}{\vert }{\vert }\) model.  相似文献   

7.
The shape-memory response (SMR) of “click” thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures (\(T_{\mathrm{prog}}\)) and isothermal-recovery temperatures (\(T_{\mathrm{iso}}\)) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of \(T_{\mathrm{iso}}\): a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to \(T_{\mathrm{g}}\). The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time (\(t_{\mathrm{sr}}\)) is significantly reduced when the isothermal-recovery temperature \(T_{\mathrm{iso}}\) increases from below to above \(T_{\mathrm{g}}\) because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by \(T_{\mathrm{iso}}\); at higher \(T_{\mathrm{iso}}\) it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at \(T_{\mathrm{iso}} < T_{\mathrm{g}}\) to maximize the effect of the structure and/or by increasing \(T_{\mathrm{iso}}\) to minimize the effect but increasing the shape-recovery rate.  相似文献   

8.
The steady motion of a rotating sphere is analysed through two contrasting viscoelastic models, a constant viscosity (FENE-CR) model and a shear-thinning (LPTT) model. Giesekus (Rheol. Acta 9:30–38, 1970) presented an intriguing rotating viscoelastic flow, which to date has not been completely explained. In order to investigate this flow, sets of parameters have been explored to analyse the significant differences introduced with the proposed models, while the momentum-continuity-stress equations are solved through a hybrid finite-element/finite volume numerical scheme. Solutions are discussed for first, sphere angular velocity increase (\(\varOmega\)), and second, through material velocity-scale increase (\(\alpha\)). Numerical predictions for different solvent-ratios (\(\beta\)) show significant differences as the sphere angular velocity increases. It is demonstrated that an emerging equatorial anticlockwise vortex emerges in a specific range of \(\varOmega\). As such, this solution matches closely with the Giesekus experimental findings. Additionally, inside the emerging inertial vortex, a contrasting positive second normal stress-difference (\(N_{2} ( \dot{\gamma} ) = \tau_{rr} - \tau_{\theta\theta}\)) region is found compared against the negative \(N_{2}\)-enveloping layer.  相似文献   

9.
Tungsten–rhenium thermocouples (type C thermocouples) are used to measure temperatures higher than 1500 \({^{\circ }}\)C under protective, inert, or vacuum conditions in a wide range of industries, such as metallurgy, power generation, and aerospace. Generally, the measurement uncertainty of a new tungsten–rhenium thermocouple is about 1 % (20 \({^{\circ }}\)C at 2000 \({^{\circ }}\)C), and a significant drift is always observed above 1200 \({^{\circ }}\)C. Recently, the National Institute of Metrology, China, has spent great efforts to calibrate tungsten–rhenium thermocouples with high-temperature fixed points of up to 2000 \({^{\circ }}\)C. In the present work, three tungsten–rhenium thermocouples made by two manufacturers were calibrated at the Pt–C eutectic fixed point (1738 \({^{\circ }}\)C) and their stability was investigated. A linear fitting and extrapolation method was developed to determine the melting and freezing temperatures of the Pt–C eutectic fixed point for avoiding the effect of thermal resistance caused by the sheath and protection tube. The results show that the repeatability of the calibration is better than 0.9 \({^{\circ }}\)C from the melting curve of the Pt–C fixed point and better than 1.2 \({^{\circ }}\)C from the freezing curve of the Pt–C fixed point, and a good agreement was obtained for the calibration with the melting and freezing temperature plateau through the linear fitting and extrapolation method. The calibration uncertainty of the thermocouples at the Pt–C eutectic fixed point was 3.1 \({^{\circ }}\)C (k \(=\) 2).  相似文献   

10.
\(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\) crystallizes in tetragonal CeOBiS\(_{2}\) structure (S. G. P4/nmm). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\). The \(T_{\mathrm{c}}\) in our sample is 5.3 K, at ambient pressure, which is marginal but definite enhancement over \(T_{\mathrm{c}}\) reported earlier (= 5.1 K). The upper critical field \(H_{\mathrm{c}2}\)(0) is greater than 3 T, which is higher than earlier report on this material. As determined from the MH curve, both \(H_{\mathrm{c}2}\) and \(H_{\mathrm{c}1}\) decrease under external pressure P (0 \(\le P \le \) 1 GPa). We observe a decrease in critical current density and transition temperature on applying pressure in \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\).  相似文献   

11.
Mesoporous \(\upgamma \)-alumina was synthesized by the microwave-hydrothermal process with a shorter duration time at 150\({^{\circ }}\)C/2 h followed by calcination at 550\({^{\circ }}\)C/1 h. Ag nanoparticles (AgNPs) were impregnated into \(\upgamma \)-alumina under a reducing atmosphere at 450\({^{\circ }}\)C. The synthesized product was characterized by X-ray diffraction (XRD), thermogravimetric (TG)/differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), \(\hbox {N}_{2}\) adsorption–desorption study, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The BET surface area values of \(\upgamma \)-alumina and Ag-impregnated \(\upgamma \)-alumina were found to be 258 and 230 m\(^{2}\) g\(^{-1}\), respectively. FESEM images showed the formation of grain-like particles of 50–70 nm in size with a flake-like microstructure. The XRD, XPS and TEM studies confirmed the presence of Ag in the synthesized product. Catalytic properties of the product for CO oxidation was studied with the \(T_{50}\) (50% conversion) and \(T_{100}\) (100% conversion) values of 118 and 135\({^{\circ }}\)C, respectively; the enhanced values were compared with the literature reported values.  相似文献   

12.
Electrodeposited ZnO coatings suffer severe capacity fading when used as conversion anodes in sealed Li cells. Capacity fading is attributed to (i) the large charge transfer resistance, \(R_{\mathrm{ct}}\) (300–700 \(\Omega \)) and (ii) the low \(\hbox {Li}^{+}\) ion diffusion coefficient, \(D_{\mathrm{Li}}^{+}\ (10^{-15}\) to \(10^{-13}\hbox { cm}^{2}\hbox { s}^{-1})\). The measured value of \(R_{\mathrm{ct}}\) is nearly 10 times higher and \(D_{\mathrm{Li}}^{+}\) 10–100 times lower than the corresponding values for \(\hbox {Cu}_{2}\hbox {O}\), which delivers a stable reversible capacity.  相似文献   

13.
Polymer-derived pyrolytic carbons (PyCs) are highly desirable building blocks for high-strength low-density ceramic meta-materials, and reinforcement with nanofibers is of interest to address brittleness and tailor multi-functional properties. The properties of carbon nanotubes (CNTs) make them leading candidates for nanocomposite reinforcement, but how CNT confinement influences the structural evolution of the PyC matrix is unknown. Here, the influence of aligned CNT proximity interactions on nano- and mesoscale structural evolution of phenol-formaldehyde-derived PyCs is established as a function of pyrolysis temperature (\(T_{\mathrm {p}}\)) using X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy. Aligned CNT PyC matrix nanocomposites are found to evolve faster at the mesoscale by plateauing in crystallite size at \(T_{\mathrm {p}}\) \(\sim\)800 \(^{\circ }\hbox {C}\), which is more than \(200\,\,^{\circ }\hbox {C}\) below that of unconfined PyCs. Since the aligned CNTs used here exhibit \(\sim\)80 nm average separations and \(\sim\)8 nm diameters, confinement effects are surprisingly not found to influence PyC structure on the atomic-scale at \(T_{\mathrm {p}}\) \(\le \)1400 \(^{\circ }\hbox {C}\). Since CNT confinement could lead to anisotropic crystallite growth in PyCs synthesized below \(\sim\)1000 \(^{\circ }\hbox {C}\), and recent modeling indicates that more slender crystallites increase PyC hardness, these results inform fabrication of PyC-based meta-materials with unrivaled specific mechanical properties.  相似文献   

14.
New measurements are reported for the isochoric heat capacity of the ionic liquid substance 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2]). These measurements extend the ranges of our earlier study (Polikhronidi et al. in Phys Chem Liq 52:657, 2014) by 5 % of the compressed liquid density and by 75 K. An adiabatic calorimeter was used to measure one-phase \((C_{\mathrm{V1}})\) liquid and two-phase \((C_{\mathrm{V2}})\) liquid + vapor isochoric heat capacities, densities \((\rho _s)\), and phase-transition temperatures \((T_s)\) of the ionic liquid (IL) substance. The combined expanded uncertainty of the density \(\rho \) and isochoric heat capacity \(C_\mathrm{V}\) measurements at the 95 % confidence level with a coverage factor of \(k = 2\) is estimated to be 0.15 % and 3 %, respectively. Measurements are concentrated in the immediate vicinity of the liquid + vapor phase-transition curve, in order to closely observe phase transitions. The present measurements and those of our earlier study are analyzed together and are presented in terms of thermodynamic properties \((T_s\), \(\rho _s\), \(C_{\mathrm{V1}}\) and \(C_{\mathrm{V2}})\) evaluated at saturation and in terms of key-derived thermodynamic properties \(C_\mathrm{P}\), \(C_\mathrm{S}\), \(W_\mathrm{S}^{{\prime }}\), \(K_{\mathrm{TS}}^{{\prime }}\), \(\left( {\partial P/\partial T} \right) _{\mathrm{V}}^{\prime }\), and \(\left( {\partial V/\partial T} \right) _\mathbf{P}^{\prime })\) on the liquid + vapor phase-transition curve. A thermodynamic relation by Yang and Yang is used to confirm the internal consistency of measured two-phase heat capacities \(C_{\mathrm{V2}} \), which are observed to fall perfectly on a line as a function of specific volume at a constant temperature. The observed linear behavior is exploited to evaluate contributions to the quantity \(C_{\mathrm{V2}} = f(V, T)\) from chemical potential \(C_{{\mathrm{V}\upmu }} =-T\frac{\mathrm{d}^{{2}}\mu }{\mathrm{d}T^{2}}\) and from vapor pressure \(C_{\mathrm{VP}} =VT\frac{\mathrm{d}^{2}P_{\mathrm{S}} }{\mathrm{d}T^{2}}\). The physical nature and specific details of the temperature and specific volume dependence of the two-phase isochoric heat capacity and some features of the other derived thermodynamic properties of IL at liquid saturation curve are considered in detail.  相似文献   

15.
This paper deals with the semi-functional partial linear regression model \(Y={{\varvec{X}}}^\mathrm{T}{\varvec{\beta }}+m({\varvec{\chi }})+\varepsilon \) under \(\alpha \)-mixing conditions. \({\varvec{\beta }} \in \mathbb {R}^{p}\) and \(m(\cdot )\) denote an unknown vector and an unknown smooth real-valued operator, respectively. The covariates \({{\varvec{X}}}\) and \({\varvec{\chi }}\) are valued in \(\mathbb {R}^{p}\) and some infinite-dimensional space, respectively, and the random error \(\varepsilon \) verifies \(\mathbb {E}(\varepsilon |{{\varvec{X}}},{\varvec{\chi }})=0\). Naïve and wild bootstrap procedures are proposed to approximate the distribution of kernel-based estimators of \({\varvec{\beta }}\) and \(m(\chi )\), and their asymptotic validities are obtained. A simulation study shows the behavior (on finite sample sizes) of the proposed bootstrap methodology when applied to construct confidence intervals, while an application to real data concerning electricity market illustrates its usefulness in practice.  相似文献   

16.
17.
The electrical and thermal properties with respect to the crystallization in \(\hbox {V}_{2}\hbox {O}_{5}\) thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near \(250\,{^{\circ }}\hbox {C}\), and Ohmic behavior was observed above \(380\,{^{\circ }}\hbox {C}\). This result was due to the metal–insulator transition induced by lattice distortion in the crystalline film, for which \(T_{\mathrm{c}}\) was \(260\,{^{\circ }}\hbox {C}\). \(T_{\mathrm{c}}\) of the film decreased from 260 \({^{\circ }}\hbox {C}\) to \(230\,{^{\circ }}\hbox {C}\) with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was \(1.67\times 10^{-7}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\) according to the nanosecond thermoreflectance measurements.  相似文献   

18.
19.
The effect of thermal annealing in an inert atmosphere (argon) on the structural and thermochromic properties of \(\hbox {MoO}_{3}\) thin films was investigated. \(\hbox {MoO}_{3}\) thin films were deposited by thermal evaporation in vacuum of \(\hbox {MoO}_{3}\) powders. X-ray diffraction patterns of the films showed the presence of the monoclinic Magneli phase \(\hbox {Mo}_{9}\hbox {O}_{26}\) for annealing temperatures above \(250\,{^{\circ }}\hbox {C}\). Absorbance spectra of the films annealed in argon indicated that their thermochromic response increases with the annealing temperature in the analyzed range (23 \({^{\circ }}\hbox {C}\)–300 \({^{\circ }}\hbox {C}\)), a result opposite to the case of thermal annealings in air, for which case the thermochromic response shows a maximum value around 200 \({^{\circ }}\)C–225 \({^{\circ }}\)C and decreases for higher temperatures. These results are explained in terms of a higher density of oxygen vacancies formed upon thermal treatments in inert atmospheres.  相似文献   

20.
Thin films of \(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\) (CZTS), a promising solar cell absorber, were grown by thermal evaporation of ZnS, Sn and Cu precursors and subsequent annealing in sulphur atmosphere. Two aspects are chosen for investigation: (i) the effect of substrate temperature (\(T_{\mathrm{S}})\) used for the deposition of precursors and (ii) (\(\hbox {N}_{2}{+}\hbox {S}_{2})\) pressure during annealing, to study their impact on the growth of CZTS films. X-ray diffraction analysis of these films revealed the structure to be kesterite with (112) preferred orientation. Crystallite size is found to slightly increase with increase in \(T_{\mathrm{S}}\) as well as pressure during annealing. From optical absorption studies, the direct optical band gap of CZTS films is found to be \({\sim }\)1.45 eV. Room temperature electrical resistivity of the films obtained on annealing the stacks at 10 and 100 mbar pressures is found to be in the ranges 25–55 and 5–25 \(\Omega \) cm, respectively, depending on \(T_{\mathrm{S}}\). Films prepared by annealing the stack deposited at 300\({^{\circ }}\)C under 100 mbar pressure for 90 min are slightly Cu-poor and Zn-rich with compact grain morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号