首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrO2-Y2O3 alloys with yttria contents between 2.0 and 6.3 mol% were prepared by arcmelting. The microstructure of the alloys after isothermal ageing was examined by electron microscopy. It was found that a modulated structure was formed in alloys aged at appropriate temperatures. The modulated structure resembles the structure of spinodally decomposed metallic alloys and ceramics. The range in which the modulated structure is developed is inside the cubic-tetragonal two-phase region of the ZrO2-Y2O3 system. The modulated structure is associated with metastable phase decomposition.  相似文献   

2.
We have developed a method of forming textured tetragonal zirconia. A suspension containing 10 vol% solid loading of monoclinic ZrO2 mixed with 3 mol% Y2O3 was prepared, and then a bead-milling process was performed using 50 μm diameter zirconia beads resulting in a well-dispersed suspension. The mixture suspension of monoclinic zirconia and yttria nanoparticles was slip cast under a magnetic field of 12 T to produce oriented monoclinic zirconia with yttria. The reaction sintering between yttria and the oriented monoclinic zirconia produces a final 3 mol% Y2O3 doped tetragonal zirconia that remains oriented.  相似文献   

3.
The (metastable) tetragonal phase in 3–4 mol% Y2O3-ZrO2 alloys undergoes a transition to the monoclinic form in the 200–300 °C temperature range. Microcracking due to the volume change at this transition has been detected in these compositions by sharp acoustic emission during heating. The phase change was confirmed by X-ray diffraction, dilatometry and scanning electron microscopy. The monoclinic tetragonal transition in ZrO2-1 mol% Y2O3 alloy at 850–750 °C and the same phase change in 2, 3, 4 and 6 mol% Y2O3 compositions at the eutectoid temperature of about 560 °C was also clearly signalled by the acoustic emission counts during heating and cooling. There was no significant acoustic emission activity on heating and cooling the 9 and 12 mol% Y2O3 compositions, which are cubic. The acoustic emission data thus confirm the phase relations in the 1–12 mol% Y2O3 region, established by conventional methods such as differential thermal analysis, dilatometry and X-ray diffraction.  相似文献   

4.
Examination of compositions in the system Si3N4-Y2O3-SiO2 using sintered samples revealed the existence of two regions of melting and three silicon yttrium oxynitride phases. The regions of melting occur at 1600° C at high SiO2 concentrations (13 mol% Si3N4 + 19 mol% Y2O3 + 68 mol% SiO2) and at 1650° C at high Y2O3 concentrations (25 mol % Si3N4 + 75 mol % Y2O3). Two ternary phases 4Y2O3 ·SiO2 ·Si3N4 and 10Y2O3 ·9SiO2 ·Si3N4 and one binary phase Si3N4 ·Y2O3 were observed. The 4Y2O3 ·SiO2 ·Si3N4 phase has a monoclinic structure (a= 11.038 Å, b=10.076 Å, c=7.552 Å, =108° 40) and appears to be isostructural with silicates of the wohlerite cuspidine series. The 10Y2O3 ·9SiO2 ·Si3N4 phase has a hexagonal unit cell (a=7.598 Å c=4.908 Å). Features of the Si3N4-Y2O3-SiO2 systems are discussed in terms of the role of Y2O3 in the hot-pressing of Si3N4, and it is suggested that Y2O3 promotes a liquid-phase sintering process which incorporates dissolution and precipitation of Si3N4 at the solid-liquid interface.Visiting Research Associate at Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, under Contract No. F33615-73-C-4155 when this work was carried out.  相似文献   

5.
The mechanisms and kinetics of the solid-state reactionx ZrO2+yY2O3+(1–x–y) Ln2O2 ternary fluorite solid solution was studied in the temperature range 1350 to 1650° C by quantitative X-ray diffraction analysis. In the ZrO2-Y2O3-CeO2 system the fluorite formation process starts with the simultaneous interaction of CeO2 and Y2O3 with ZrO2, although the reaction rate of ceria with zirconia is more rapid. In the ZrO2-Y2O3-Nd2O3 system, the formation of a pyrochlore, Nd2Zr2O7, responsible for the formation process of the ternary fluorite solid solution. Finally, in the ZrO2-Y2O3-Er2O3 system, a competitive interaction of yttria and erbia occurred in the formation process of the ternary solid solution. The kinetic data were treated using the Avrami equation, and activation energies for the processes studied calculated.  相似文献   

6.
Preparation of nanocrystalline YSZ powders by the plasma technique   总被引:1,自引:0,他引:1  
A plasma synthesis method has been devised to produce nanosize YSZ powders with various yttria contents. The powders are synthesized by introducing a mixture of coarse-grained zirconia and yttria into an r.f. inductively coupled plasma flame. The average particle size of the as-prepared powders is in the range 20–40 nm and the specific surface area is 18–50 m2g–1. The phase and granulometric composition of the produced powders depend on the degree of evaporation of raw powders, reagent concentration in the gas flow and quenching rate, and on the content of Y2O3. Up to 5.5 mol% yttria, the major phase of nanosize powders is tetragonal ZrO2, mostly as the non-transformable (t) form. For yttria contents higher than 6 mol%, the major phase is cubic ZrO2.  相似文献   

7.
Tetragonal ZrO2 polycrystalline (TZP) ceramics with varying yttria and ceria content (2–3 mol%) and distribution (coated or co-precipitated), and varying second phase content Al2O3 were prepared and investigated by means of microstructural analysis, mechanical properties, and hydrothermal stability, and ZrO2-based composites with 35–60 vol% of electrical conductive TiN particles were developed. The effects of stabilizer content and means of addition, powder preparation, sintering conditions, and grain size have been systematically investigated. Fully dense Y-TZP ceramics, stabilized with 2–3 mol% Y2O3, 2 wt% Al2O3 can be achieved by hot pressing at 1,450 °C for 1 h. The hydrothermal stability increased with increasing overall yttria content. The jet-milled TiN powder was used to investigate the ZrO2–TiN composites as function of the TiN content. The experimental work revealed that fully dense ZrO2–TiN composites, stabilized with 1.75 mol% Y2O3, 0.75 wt% Al2O3, and a jet-milled TiN content ranging from 35 to 60 vol% could be achieved by hot pressing at 1,550 °C for 1 h. Transformation toughening was found as the primary toughening mechanism. The decreasing hardness and strength could be attributed to an increasing TiN grain size with increasing TiN content, whereas the decreasing toughness might be due to the decreasing contribution of transformation toughening from the tetragonal to monoclinic ZrO2 phase transformation. The E modulus increases linearly with increasing TiN content, whereas the hydrothermal stability increases with addition of TiN content.  相似文献   

8.
ZrO2 polycrystals, partially stabilized by 2 to 7 mol% Y2O3, were arc-melted and rapidly quenched using an arc-imaging furnace with a hammer-anvil unit. Some of the specimens were further annealed at 1700° C for 3 h in air. The phases and the microstructures of these ZrO2-Y2O3 polycrystals were examined through X-ray diffraction and transmission electron microscopy. Special emphasis was placed upon the examination of the microstructure of the metastable tetragonal phase (t phase) which was formed by a diffusionless transformation of the high-temperature cubic phase. It was found that the t phase exhibits a twinned and mosaic structure made of alternating layers of twin-related variants. A comparison of the present experimental results with other related works has also been made.  相似文献   

9.
A wet-chemical approach has been applied to derive fine powders with various ceria and yttria compositions in the CeO2-Y2O3 ZrO2 ceramic system by the co-precipitation method. The characteristics of the as-derived powders have been evaluated through differential thermal analysis, thermogravimetric analysis, BET surface-area analysis, and inductively coupled plasma technique. The hardness and fracture toughness of the as-sintered specimens were evaluated by the indentation method. A highly toughened ceramic withK IC>25 MPa m1/2 was achieved with the composition 5.5 mol% CeO2-2 mol% YO1.5-ZrO2. The relationship between the mechanical properties and the compositions of stabilizers, CeO2 and Y2O3 is discussed with respect to the degree of tetragonal to monoclinic transformation as well as the grain size of the as-sintered ceramics.  相似文献   

10.
Addition of 0.15–0.5 mol% acceptor oxide, Al2O3, to 3 mol% Y2O3-ZrO2 results in enhanced densification at 1350 °C. The enhancement is accounted for by a liquid phase sintering mechanism. The addition of donor oxide, Ta2O5, of 0.15–2.5 mol % at 1300–1600 °C results in the destabilization of tetragonal (t-) phase and the decrease of final density in 3 mol% Y2O3-TZP (tetragonal ZrO2 polycrystals). X-ray diffractometry (XRD) reveals that the Ta2O5-added 3 mol% Y2O3-ZrO2 contains monoclinic (m-) ZrO2 and a second phase of Ta2Zr6O17. The decreasing in final density is attributed to the increase of m-ZrO2 content. Complete destabilization of t-ZrO2 to m-ZrO2 in samples added with 2.5 mol% Ta2O5 is interpreted by the compensation effect based on donor- and acceptor-codoping defect chemistry.  相似文献   

11.
The crystal structure of compositionally homogeneous, nanocrystalline ZrO2 - X mol% Y2O3 (X = 2.8, 4, 5, 6, 7, 8, 9, 10, 11, and 12) powders synthesized by a nitrate-citrate gel-combustion process has been studied by X-ray diffraction. By applying the Rietveld method, it was found that all the powders presented the tetragonal phase (P4 2/nmc space group). The axial ratio c/a f decreased with increasing Y2O3 content and became almost unity at 9 mol% Y2O3. However, powders in the compositional range of ZrO2 - 9 to 12 mol% Y2O3 exhibited the oxygen atoms displaced from their ideal sites of the cubic phase along the c axis, which is known as the t-form of the tetragonal phase. A conjunct analysis of crystallite size and microstrain of all the powders is also presented.  相似文献   

12.
In Si3N4-ZrO2 composite, the effects of zirconia and Y2O3 dissolved in zyttrite on the densification and the/ phase transformation of Si3N4 were studied using hot-pressing of Si3N4 with the addition of pure, 3, 6, and 8 mol% Y2O3-doped zirconia. Reaction couples between Si3N4 and ZrO2 of zyttrite were made to observe the reaction phenomena. The addition of pure zirconia was not effective to obtain full density of the Si3N4-ZrO2 composite. However, Y2O3 diffused from the added zyttrite promoted densification; the density of Si3N4 with 5 vol% pure ZrO2 composite was 71% theoretical, and nearly full density (>97%) could be obtained in Si3N4 with 5 vol% 6, 8 mol% Y2O3-doped ZrO2 composite. On the basis of observations of the Si3N4-pure ZrO2 reaction couple, the reaction between Si3N4 and ZrO2 resulted in the formation of Si2N2O phase, and the/ phase transformation of Si3N4 occurred via this Si2N2O phase. From the XRD analysis of the reaction layer between Si3N4 and zyttrite, it is suggested that the reaction products, Y2Si2O7 and Y2Si3N4O3 phases, play an important role in the densification of Si3N4-zyttrite composite.  相似文献   

13.
The deformation of ZrO2 polycrystals containing 2 to 8 mol% Y2O3 or 12 mol% CeO2 were investigated by uniaxial tension and tensile creep tests at elevated temperatures. It was found that there were two deformation mechanisms. The stress exponent was close to 2 for the finegrained materials (less than 1 m), but the exponent decreased with increasing grain size. This behaviour was analysed using a model based on grain-boundary sliding with diffusion accommodation, in which the diffusion creep controlled by interface-reaction and that controlled by diffusion of cations were incorporated. The diffusion coefficient of cations was greatly affected by the concentration of the solute ions. It was observed that there was a negative correlation between interface-reaction rate and Y2O3 concentration.  相似文献   

14.
ZrO2 (3 mol% Y2O3) tetragonal and t-ceramics (displacively formed ceramics) were compared with ZrO2 ceramics (3 mol% Ln2O3, where Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Er, or Yb) processed in an identical manner. Sintering at 1500 °C for 2 h produced mainly tetragonal polytypes for the dopants with smaller ionic radii than Dy(i.e., Er, Y and Yb) but when ZrO2 was reaction sintered with dopants with larger ionic radii excessive monoclinic phase transformation and associated microcracking resulted. High-temperature annealing in the cubic stability regime and rapid cooling through the tetragonal stability regime was used to fabricate t-composites of ZrO2 doped with Y, Yb, Er or Dy. Room-temperature fracture toughness and strength values are explained on the basis of a ferroelastic-cubic-to-tetragonal transformation. The domain structure was viewed by transmission optical microscopy (TOM) or transmission electron microscopy (TEM).  相似文献   

15.
Microstructural change associated with the diffusionless cubic-to-tetragonal (c-t) transition was examined in arc-melted ZrO2-Y2O3 alloys with yttria content 3 to 5 mol %. It was found that a two-step microstructural change occurred during the transition. A domain structure with antiphase domain boundary-like contrast is formed initially and plate-like or lenticular features later. The domain size decreases with increasing yttria content of the alloy. The change of domain size seems to be related to the change inT 0 temperature with composition. The nature of the c-t transition is discussed in this paper.  相似文献   

16.
Solid state reactions between ZrO2· SiO2 and Al2O3 in mixed powders were studied by quantitative X-ray diffraction, density measurements and qualitative EDAX. Data were obtained at temperatures ranging from 1400 to 1600° C for 5 h; the initial molar ratios of the reactants (Al2O3/ZrO2 · SiO2) varying from 0 to 5. The results indicate that: (1) ZrO2· SiO2 and Al2O3 react and form ZrO2, crystalline 3Al2O3 · 2SiO2 and a noncrystalline mullite phase; (2) the non-crystalline mullite phase is an important transitional phase towards equilibrium under subsolidus conditions. In the experimental conditions used the amount of the non-crystalline phase varies by as much as about 15%. This phase is of great importance in the mechanisms of reaction sintering between ZrO2 · SiO2 and Al2O3.  相似文献   

17.
Silicon carbide has been deposited by laser-induced chemical vapor infiltration from the gas precursor tetramethylsilane, Si(CH3)4, into loosely packed powder layers of SiC, ZrO2-Y2O3, or Mo. The goal is to produce dense layered structures of arbitrary shape by computer controlled laser scanning where the pore spaces between the powder particles are filled with solid material deposited from the gas phase using the selective area laser deposition vapor infiltration (SALDVI) process. Layered samples were fabricated for each powder material using both single line (bar) and multiple line (slab) laser scan patterns and 10 Torr Si(CH3)4, 2.5 m/s scan speed, 1000°C target temperature, and 120 m layer thickness. Samples of SiC and ZrO2-Y2O3 are prone to surface cracking in the bar geometry, and cracking and delamination of layers in the slab geometry. Samples fabricated with Mo powder have no cracks or delamination defects in either bar or slab geometry as well as a better surface appearance.  相似文献   

18.
Spark plasma sintering (SPS) has been performed for 5 min at 1500°C and 30 MPa using submicrometer-sized Al2O3/ZrO2(2Y) composite powders in the Al2O3-rich region. Dense ZrO2-toughened Al2O3 (ZTA) ceramics show excellent mechanical strength; the strength of 1620 MPa is achieved in the ZTA with 50 mol% ZrO2. The grain size of Al2O3 in ZTA decreases from 1.5 to 0.6 m with increased ZrO2 content. Almost all the ZrO2 grains (0.3 m) are located in the boundaries of the Al2O3 grains. Mechanical properties are discussed, with an emphasis on the relation between t-/m-ZrO2 ratios and microstructures of ZTA.  相似文献   

19.
The phases, transformability, microstructure and mechanical properties of ZrO2-Gd2O3 polycrystals containing 1.75–8 mol% Gd2O3 were studied. The samples were prepared by a coprecipitation route followed by sintering at 1400°C for 2 hours. The grain size was in the range of 0.1–0.2 m except for some large grains at high Gd2O3 contents. Only a tetragonal phase was observed between 2–4 mol% Gd2O3 and a cubic phase for compositions containing 9.6 mol% Gd2O3. A peak K IC of 12 MPa m1/2 and a strength of 800 MPa were obtained in the 2 mol% Gd2O3 alloy for which the t m transformation on the fracture surface was also found to be maximum. Transformation toughening is able to account for most of the toughness of the samples.  相似文献   

20.
《Materials Letters》2006,60(9-10):1170-1173
Nano sized zirconia (ZrO2) powders doped with different amount of yttria (Y2O3) (3, 5 and 8 mol%) were prepared through coprecipitation method. The crystallite size estimated from the X-ray peak broadening is around 10 nm. Phase identification was carried out using XRD and Raman spectroscopy. Raman spectroscopic study of the synthesized materials show clear evidence of the presence of single phase cubic structure in the case of 8 mol% Y2O3 doped fully stabilized zirconia (8Y-FSZ); tetragonal phase in the case of zirconia doped with 3 mol% Y2O3 (3Y-TZP-tetragonal zirconia polycrystal) and a mixture of cubic and tetragonal phases for 5 mol% Y2O3 doped partially stabilized zirconia (5Y-PSZ). Raman technique is therefore an effective tool to distinguish the phases present in the calcined nano sized powders of zirconia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号