首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
基于数值模拟的镁合金真空压铸浇注系统设计与优化   总被引:1,自引:0,他引:1  
设计出两种类型的浇口及浇注系统,运用有限元模拟软件对两种设计进行模拟,观察液态金属充型及凝固过程中流场和温度场的分布.根据凝固规律有效预测铸件中可能存在的缩孔及气孔缺陷的分布与尺寸,找出优化的浇注系统设计.结果表明:在浇注温度655℃、模具初始温度200℃、冲头压射速度3 m/s、真空度30 kPa情况下,具有阶梯分型面结构的浇注系统优于平直分型面结构;同时在优化设计基础上生产出具有致密微观结构的镁合金零件.  相似文献   

2.
针对镁合金特殊的凝固特性,借助AnyCasting软件,对镁合金笔记本外壳充型凝固过程进行数值模拟。分析压铸过程中金属液的流动过程,以及造成卷气和缩孔、缩松的原因。通过采取降低浇注温度、提高快压射速度的方法,充型过程中的回流行为得到一定程度的改善,但缩孔、缩松没有明显减少。通过在凝固过程中对压铸件施加压力,促进金属液凝固,缩孔、缩松缺陷明显减少。  相似文献   

3.
对镁合金壳体零件设计了两种类型的浇注系统,运用有限元模拟软件对两种设计的充型和凝固过程进行模拟,通过观察流场和温度场的分布情况,预测充型时间、凝固时间以及铸件中可能存在的缩孔及气孔缺陷的分布与尺寸,提出优化的浇注系统设计.结果表明:在浇注温度655℃、模具初始温度200℃、冲头压射速度2.4 m/s的条件下,阶梯分型面设计采用的浇注系统优于平直分型面设计的浇注系统.  相似文献   

4.
针对镁合金特殊的凝固特性,借助正交试验方法,运用Anycasting2.4软件,对镁合金摩托车曲轴箱右盖充型凝固过程进行了数值模拟,研究了慢压射速度、快压射速度、浇注温度和模具温度对充型流动特性、凝固过程及缩孔、缩松的影响。结果表明,慢压射速度越大,金属液充型时间越短,金属液越不平稳,最大凝固速率越大;模具温度越高,凝固时间越长。而这4因素对压铸缺陷的影响程度相近。缺陷出现在薄壁壳体附近的厚壁处。根据分析结果,提出了优化方案,并以此为基础进行了样件生产。  相似文献   

5.
压铸件产生的缺陷除了在凝固收缩的过程中容易出现,在冷室压铸机压射时,慢压射选取速度不当也是造成铸件缺陷的一个重要原因.通过对镁合金转向管柱支架的慢压射过程进行理论分析和计算机模拟辅助优化,得出加速度为0.6 m/s2、慢压射速度为0.4 m/s情况下,压射速度较为合理.能缩短生产周期,提高效率.  相似文献   

6.
镁合金汽车座椅骨架浇注系统的设计优化   总被引:1,自引:1,他引:1  
采用有限元数值模拟技术,对镁合金坐椅骨架压铸件充型过程、凝固过程进行仿真分析,预测了压铸件可能出现缺陷的位置,提出了浇注系统的优化设计方案.对比优化前后工艺方案表明,优化后的浇注系统使镁合金压铸过程中的卷气及缩孔缩松倾向明显减小,压铸件的品质得到提高,从而有效改善了传统压铸工艺和模具设计的潜在风险,缩短了生产周期.  相似文献   

7.
镁合金压铸工艺参数的模拟与优化   总被引:1,自引:1,他引:0  
应用FLOW3D 9.2软件对AZ91D镁合金平面薄板件进行了模拟,对填充压力、温度、速度分布以及凝固情况进行了分析,找出了最佳的压铸参数条件,阐明了镁合金压铸过程遇到的缺陷问题,对压铸生产有一定的指导意义。  相似文献   

8.
工艺参数对压铸AM50镁合金力学性能的影响   总被引:3,自引:1,他引:3  
研究厂压铸工艺参数包括压射压力为380~420MPa、压铸模温度为130~210℃和压射速度为1.8~3.4m/s对AM50镁合金力学性能的影响。在适宜的工艺参数下,压铸AM50镁合金的室温抗拉强度、屈服强度以及伸长率分别可以达到238MPa、122MPa和13.6%。  相似文献   

9.
压铸镁合金模具温度场分布的研究   总被引:14,自引:2,他引:14  
李朝霞  刘文辉  熊守美  柳百成 《铸造》2003,52(6):400-404
用数值模拟的方法,计算、分析了镁合金件压铸过程模具温度场的分布特征,研究了浇注温度、模具预热温度工艺参数对模具温度场的影响和较优参数的选择,并通过试验测量验证了模拟结果的正确性。  相似文献   

10.
采用有限元模拟仿真软件结合正交实验方法对咖啡机顶盖压铸成形工艺进行数值模拟,研究了压铸工艺参数对模具热疲劳的影响。得出浇注温度660℃、模具预热温度220℃、压射比压50 MPa、压射速度5 m/s为最佳的一组工艺参数,使试验指标σmax平均值σmax最小,模具的热疲劳趋势最低,零件的成形质量最佳。试验结果验证了该优化设计对减少模具的热疲劳趋势的可行性,对相近结构压铸件的生产具有一定的指导意义。  相似文献   

11.
为了观察在不同压射速度下金属液在充型过程中的流动情况,分析缺陷分布与位置,从而确定最佳浇注方案,利用模拟仿真软件FLOW-3D,保持模具温度和浇注温度不变,分别采用压射速度为4.3、6.0、7.8m/s,对镁合金转向器支架进行模拟仿真,观察气孔、缩孔等缺陷的分布。结果发现,在模具初始温度为220℃,浇注温度为700℃的条件下,最优的压射速度应为6.0m/s,此时能达到最佳充型效果。  相似文献   

12.
研究了浇注温度、模具温度和内浇道速度对镁合金压铸件抗拉强度和晶粒尺寸的影响规律。结果表明,随浇注温度和内浇道速度的升高,试样的抗拉强度先增大再减小,晶粒尺寸则先减小再增大;当模具温度升高时,试样的抗拉强度随着模具温度升高而增大,晶粒尺寸则随之减小。当压铸工艺参数(浇注温度680℃、模具温度为215℃、内浇道速度为70m/s)适宜时,AZ91HP合金标准拉伸试棒的抗拉强度吼稳定在224.2MPa,密度ρ稳定在1.77g/cm^3,晶粒尺寸只有14.4μm。通过线性回归建立了晶粒尺寸和抗拉强度之间的经验关系。  相似文献   

13.
采用阶梯试验模具及AM50合金,进行了系统的真空压铸试验,实测了不同厚度的阶梯试样在不同工艺条件下的密度及力学性能,研究了高真空压铸工艺参数对AM50镁合金力学性能的影响规律.结果表明,随着型腔真空压力的降低,铸件密度、抗拉强度和伸长率均随之提高;铸造压力对力学性能的影响在真空压铸和常规压铸中遵循基本相同的规律,即增大铸造压力可以使铸件的致密程度、抗拉强度、屈服强度和伸长率得到提高;随着高速速度的增大,薄壁铸件的抗拉强度、屈服强度和伸长率均表现出明显的增加,这一点与常规压铸的规律相反.结合高真空和高速工艺,可以使薄壁铸件的抗拉强度和伸长率得到较为明显的提升.  相似文献   

14.
铝合金支架压铸数值模拟及压铸工艺研究   总被引:1,自引:1,他引:0  
利用ProCAST铸造模拟软件,对铝合金压铸件支架充型、凝固过程进行了数值模拟,得到了速度场、温度场的分布和变化规律。结果表明,浇注温度对压铸铝合金的模拟结果影响最大,其次为模具预热温度、充型速度。本试验条件下得到的优化工艺参数:浇注温度为600℃,模具预热温度为200℃,充型速度为2.5m/s。按照优化后的压铸工艺参数进行生产,得到了合格的铸件。  相似文献   

15.
在对镁合金发动机缸体压铸件进行工艺分析的基础上,通过应用正交试验方法,并使用模拟软件对金属液的充型和凝固过程进行数值模拟。结合各组试验所得的不同数据,确定了压铸件生产的优化工艺参数:模具预热温度为220℃,浇注温度为670℃,压射速度为8.5m/s,并确定了工艺参数对铸件缺陷的影响顺序。且在该组优化的工艺参数下,通过对金属液的充型和凝固过程的动态观察,预测充型时间、凝固时间和可能存在的缩松、缩孔及气孔缺陷的分布与体积分数。实现了发动机缸体压铸工艺参数的优化。  相似文献   

16.
运用抽真空和局部补压技术对镁合金摩托车后轮毂(简称镁轮毂)进行压铸。模具采用辋缘切向进浇,中心集渣设计,有效解决了轮毂夹杂与热节缩孔(松)。抽真空系统的设计与应用避免了镁合金出现氧化、卷气问题,使模具型腔真空度可达2.9kPa。局部补压设计解决了轮芯厚大部位凝固时镁液补缩不足产生的缩孔问题。同时对镁轮毂制程中易出现的冷隔、缩孔、开裂、夹渣、变形等缺陷进行了分析,提出了改善方案。实践证明,真空辅助高压铸造加局部补压能获得外轮廓清晰、尺寸合格、符合摩托车轮毂安全性能要求的产品。  相似文献   

17.
铝合金不粘锅压铸模浇注系统设计及充型模拟   总被引:1,自引:0,他引:1  
铝合金压铸不粘锅在实际生产中很容易出现各种缺陷,而且不粘锅在喷涂过程中要经过430℃的高温烘烤,很容易在铸件表面出现气泡,从而导致产品报废。针对这一问题,对铝合金压铸不粘汤锅进行了浇注系统的设计计算。利用数值模拟软件Flow-3D,针对设计方案进行了充型模拟,分析了模拟结果并根据结果重新设计了浇道。新设计的浇道能够实现顺序充填,充填效果较好,产生缺陷的可能性降低。  相似文献   

18.
介绍了锌合金压铸浇注系统设计的最新方法。目前已在世界上广泛采用的锥形流道有助于生产高品质的锌合金压铸件。  相似文献   

19.
介绍了锌合金压铸浇注系统设计的最新方法。目前已在世界上广泛采用的锥形流道有助于生产高品质的锌合金压铸件  相似文献   

20.
混合稀土对压铸AZ91D合金的组织及力学性能的影响   总被引:1,自引:1,他引:0  
研究了不同添加量的混合稀土对压铸AZ91D合金的组织和力学性能的影响。添加混合稀土后,常温力学性能没有明显改善。在100℃时,混合稀土含量为0.4%的压铸AZ91D合金的力学性能与不含混合稀土的试样几乎相等。在170℃时,混合稀土含量为0.4%的压铸AZ91D合金的抗拉强度、屈服强度及伸长率分别为206MPa、142MPa、26%,比不含混合稀土的压铸AZ91D试样的力学性能分别提高15.7%、10%及30%。这是因为添加适量的混合稀土后,形成热稳定性较高的强化相,增加了位错滑移阻力并阻碍裂纹扩展,镁基体中稀土元素起到固溶强化作用,从而提高镁合金的高温抗拉强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号