首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
通过原位交联木浆纤维素/1-乙基-3-甲基咪唑醋酸盐溶液制备了纤维素基离子凝胶聚合物电解质,并采用扫描电子显微镜(SEM)、流变、力学拉伸及交流阻抗等测试,研究了纤维素基离子凝胶的形貌﹑力学性能和电化学性能。SEM结果表明,所得交联型离子凝胶具有纳米多孔网状结构。流变结果表明高温下离子凝胶具有很好的弹性,200℃时的弹性模量为1.7×105 Pa。电学性能测试结果表明室温下离子凝胶具有很高电导率,达到6.3×10-3 S/cm,且电导率随温度的升高而增大。力学性能测试结果显示离子凝胶具有良好的力学强度,其拉伸强度达9.6 MPa。  相似文献   

2.
张灏  杨继萍  陈功  李红  苏航 《复合材料学报》2018,35(11):2935-2941
在丙烯酸酯体系中加入填料酚酞基聚芳醚酮(PEKC),通过紫外光(UV)固化交联制备出可快速固化且耐超低温(液氮)的PEKC/丙烯酸酯体系,通过考察PEKC/丙烯酸酯体系的凝胶率及固化收缩率,确定了其在UV固化下的交联程度及固化收缩状况;通过动态热机械分析表征了PEKC/丙烯酸酯体系的线性热膨胀系数(α),研究了其在温度变化下的尺寸稳定性;测试并比较了PEKC/丙烯酸酯体系在超低温及室温下的剪切强度,表征了其耐超低温性能。结果表明,PEKC与丙烯酸酯质量比为0~4%的PEKC/丙烯酸酯体系可以实现快速固化,固化5 s后树脂的凝胶率可达80%以上。随着PEKC/丙烯酸酯中PEKC质量比从0增加到4%,固化后PEKC/丙烯酸酯体系在-150~50℃温度范围的线性热膨胀系数由6.71×10-5-1降低至5.29×10-5-1,体收缩率由25.61%降低至6.24%,线收缩率由1.78%降低至0.41%,而其断裂延伸率逐渐提高,韧性增强。研究发现,PEKC/丙烯酸酯复配体系的室温拉伸强度都在20 MPa以上,PEKC与丙烯酸酯质量比为3%的PEKC/丙烯酸酯体系铝-玻璃搭接在室温和液氮温度下的拉伸剪切强度分别可达17.48 MPa和17.23 MPa。  相似文献   

3.
以1-乙烯基-3-丁基咪唑六氟磷酸盐(VBMIMPF6)为单体,1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)为溶剂和电解质,并以聚乙二醇二丙烯酸酯(PEGDA)为交联剂,采用原位紫外交联的方法制备出了一种新型聚离子液体基离子凝胶电解质。通过扫描电子显微镜、流变性能、力学拉伸和电化学交流阻抗等手段,考察了离子凝胶电解质的微观结构、流变性能、力学性能和电学性能。流变性能测试结果表明,离子凝胶具有很高的储能模量(10~4~10~5 Pa),且温度200℃内储能模量基本保持不变。拉伸性能测试结果表明,体系具有很强的力学性能且拉伸强度达到10~5 Pa数量级。电学性能测试结果表明室温下离子凝胶具有很高的电导率(10~(-4)~10~(-3)S/cm),且电导率随BMIMPF6含量的增加而增大。  相似文献   

4.
以季铵化壳聚糖(QCS)为制膜原料,[Nbmm]OH碱性离子液体为掺杂物,通过溶液浇铸法制备了一系列掺杂碱性离子液体([Nbmm]OH)的交联复合膜(QCS/[Nbmm]OH)。采用红外光谱、热重分析及扫描电镜对复合膜的结构、热稳定性和微观形貌进行分析。同时考察离子液体掺杂量对QCS/[Nbmm]OH复合膜的含水率、力学强度及导电性能等指标的影响。结果表明,随着[Nbmm]OH离子液体掺杂量的增加,复合膜的含水率、离子交换量以及电导率均增加,但是拉伸强度和断裂伸长率略有下降。其中,当离子液体掺杂量为15%(质量分数)时,复合膜在70℃的电导率为0.0115S/cm,拉伸强度为19 MPa,离子交换量为1.25 mmol/g,含水率和溶胀度分别为143%和87%。  相似文献   

5.
低聚醚/聚氨酯固体电解质的形态及离子导电性能   总被引:2,自引:0,他引:2  
采用聚氧化乙烯或聚二氧戊环作为增塑剂对分别以聚四氢呋喃(PTHF)和聚己二酸乙二醇酯(EGEGPU)为软段的聚氨酯固体电解质体系进行了共混增塑,并对所得固体电解质体系的形态和离子导电性能进行了讨论,结果表明,低聚醚可以作为增塑剂而有效地改善聚氨酯固体电解质体系的链段柔顺性及聚集形态,从而提高体系的离子导电性能,PEG可以对EGPU固体电解质体系进行有效的增塑改性,其中EGPU132-PEG600-12的离子电导率在室温下可以达到10^-5S/cm以上;PDXL对EGPU固体电解质增塑改性效果较差,但是PDXL是PTHFPU固体电解质体系的有效的增塑剂。  相似文献   

6.
以吗啡啉与溴代十二烷为原料,合成新型[Nbmd]OH碱性双核离子液体,并将[Nbmd]OH引入聚乙烯醇(PVA)的铸膜液中,通过浇铸法制备了掺杂碱性离子液体的复合阴离子膜PVA/[Nbmd]OH。采用热重分析及扫描电镜对所制备的复合阴离子膜的热稳定性及形貌进行表征。同时考察了离子液体含量对PVA/[Nbmd]OH复合膜的含水率、溶胀性能、力学性能及电导率的影响。结果表明,离子液体含量的增加可提高PVA/[Nbmd]OH复合膜的含水率、溶胀度、电导率等。其中,当碱性离子液体质量分数为20%时,复合膜的综合性能达到最优,此时,膜的含水率和拉伸强度分别达到161.6%和23 MPa,在70℃时,膜的电导率为2.11×10~(-3)S/cm,表明碱性离子液体的引入,能明显改善膜的导电性能,但是拉伸强度受到了一定的影响。  相似文献   

7.
新型室温固化双组分胶粘剂的研究   总被引:1,自引:0,他引:1  
利用自合成聚丙烯酸酯聚合物和环氧丙烯酸酯制备了新型双组分室温固化丙烯酸酯胶粘剂.研究并讨论了该胶粘剂组成的比例、活性单体对粘合强度、胶粘性能和胶粘剂的贮存稳定性的影响、确定了室温固化氧化-还原体系剂及适宜固化时间用量.该胶粘剂对金属的拉伸强度可达23.5MPa.  相似文献   

8.
通过原位插层聚合制备了聚甲基丙烯酸甲酯/膨胀石墨纳米导电复合材料,其室温导电渗滤阈值约为3%(质量分数),当膨胀石墨的质量分数为8%时,室温电导率可高达60 S/cm。通过TEM、SEM观察了复合材料的形貌,用DSC测定其热力学性能并探讨了不同外加电压对PMM A/膨胀石墨纳米导电复合材料体积电导率的影响,同时研究了复合材料的拉伸强度。  相似文献   

9.
等规聚丙烯(iPP)的收缩率高和缺口冲击强度低的缺点严重限制了其应用范围。文中研究了短玻璃纤维(GF)、聚丙烯接枝马来酸酐(MPP)及复合增韧剂(CTAs)对iPP的微观结构、收缩率和冲击强度等性能的影响。结果表明,当体系中加入30 phr GF时,样条在室温下放置24 h和48 h后的收缩率分别降低为0.168%和0.191%,仅仅为纯iPP的收缩率(1.821%)的9.2%和10.5%。在体系PP/GF/MPP/CTAs(质量比为55/30/5/10)中,拉伸强度提高至61.37 MPa,比纯iPP提高了81.2%;拉伸模量提高至1545 MPa,比纯iPP提高了118%;冲击强度提高至20.11 k J/m2,比纯PP提高了225%。  相似文献   

10.
利用冻融循环法制备了羧基化多壁碳纳米管(MWCNTs)/聚乙二醇(PEG)-聚乙烯醇(PVA)复合水凝胶。考察了不同质量配比下MWCNTs/PEG-PVA复合水凝胶的微观形貌变化,并研究了复合凝胶的溶胀性能、拉伸强度、热稳定及导电性能。结果表明,加入MWCNTs后MWCNTs/PEG-PVA复合凝胶仍具有多孔的三维网状结构但孔径尺寸变小。当MWCNTs与PVA的质量比大于1.0∶100时,MWCNTs/PEG-PVA复合凝胶的孔洞均匀性降低。随着MWCNTs量的增加,MWCNTs/PEG-PVA复合凝胶的溶胀度及拉伸强度均先升高后降低。当MWCNTs与PVA的质量比为1.0∶100时,MWCNTs/PEG-PVA复合凝胶的溶胀度达到最大(1450%),孔隙率最高(75.8%),拉伸强度及断裂伸长率达到最大值,分别为0.97 MPa和384.0%。MWCNTs的加入提高了MWCNTs/PEG-PVA复合凝胶的热稳定性,MWCNTs/PEG-PVA复合凝胶的初始热分解温度从235℃上升至260℃;随着MWCNTs量的增加,MWCNTs/PEG-PVA复合凝胶的电导率从1.10×10-6 S/cm升高至6.96×10-4 S/cm。  相似文献   

11.
为了改善传统静电纺丝无纺布纤维膜力学性能较差的缺点,采用静电纺丝和静电喷雾技术相结合的方法,同时进行静电纺PPESK浓溶液和PVDF稀溶液,制备得到PPESK纤维/PVDF珠粒复合锂电池隔膜,并在160℃进行热压后处理。通过扫描电子显微镜、万能拉伸试验机、电化学工作站及充放电测试仪等表征复合锂电池隔膜的微观结构、力学性能、离子电导率和相应的电池充放电性能。结果表明,该复合隔膜具有良好的电解液润湿性,室温下离子电导率达到1.92mS·cm-1,PVDF珠粒均匀地分布在PPESK纤维中,珠粒经热压产生微熔融有效增强了纤维之间的黏结力,使复合膜的力学强度提高到13.2MPa。此外,使用复合隔膜装配的电池展现出较高的放电比容量和稳定的循环性能。  相似文献   

12.
Films of poly(ethylene oxide)-LiCF3SO3-based complexes containing different amounts of poly(ethylone glycol) (PEG) with molecular weights ranging from 400 to 2000 were prepared by solution casting. The ionic conductivity is presented as a function of temperature, molecular weight and the PEG content used. The conductivity increases with decreasing molecular weight of PEG and with increasing PEG content. The incorporation of PEG with a molecular weight of 600 or less gives rise to a maximum conductivity value of 3 × 10–3 Sm–1 at 25° C. The conductivity enhancement at room temperature can be attributed to the increase in the amorphous regions responsible for the ionic conduction.  相似文献   

13.
针对聚氧化乙烯基固态聚合物电解质存在的问题,分别以PEG400、PEG600合成了相应的1,3-二氯-2-丙醇聚乙二醇醚,并通过在Na2S2溶液中聚合,制备了1,3-二氯-2-丙醇聚乙二醇醚基聚硫化合物{PS(DCP-PEG)}。通过红外光谱(IR)、元素分析、交流阻抗、差示扫描量热(DSC)、热重分析(TG)等测试对该聚合物的结构、热力学以及导电性能进行表征。结果表明,合成的产物结构与设计的结果一致.该含硫聚合物电解质力学性能优良,电极接触好,热分解温度在220℃以上,室温电导率可达10-5S/cm,在锂硫聚合物电池中具有实际应用价值。  相似文献   

14.
Rubbers have been well accepted for modifying brittle epoxies but rubber modified epoxies usually posses lowered tensile strength though enhanced ductility and fracture resistance. In this work, a polyethylene glycol (PEG-4000) is used to modify diglycidyl ether of bisphenol A/methyltetrahydrophthalic anhydride system for enhancing cryogenic tensile strength, ductility and impact resistance. The results display that the cryogenic tensile strength, ductility (failure strain) and fracture resistance (impact strength) are all enhanced for the modified epoxy system at proper PEG contents. The maximum tensile strength (127.8 MPa) at the cryogenic temperature (77 K) with an improvement of 30.1% is observed for the modified system with the 15 wt% PEG content. The ductility and impact resistance at both room temperature and cryogenic temperature are all improved for the modified epoxy system with proper PEG-4000 contents. These observations are explained by the positron annihilation lifetime spectroscopy results and scanning electron microscopy results. Moreover, the glass transition temperature decreases slightly with increasing PEG content.  相似文献   

15.
For manufacturing the magnets of fusion machines pure copper of both high mechanical resistance and electrical conductivity is required. Though high purity copper guarantees high electrical conductivity, its mechanical properties may be not suitable for the applications in tokamaks. In this view, a new procedure developed for obtaining high purity copper with excellent mechanical strength is described in this work. Samples of oxygen free copper (OFC) have been worked by pressing in liquid nitrogen (77 K). It has been verified that the mechanical properties of the worked metal are strongly dependent on the strain rate. Very low strain rates permitted to attain values of tensile yield strength (550 MPa) significantly higher than those obtained by traditional cold-working at room temperature (450 MPa). The electrical conductivity of the cryo-worked Cu decreases with the tensile yield strength even though the hardest samples of tensile yield strength of 550 MPa exhibit still acceptable values of conductivity (about 94 % IACS at room temperature).  相似文献   

16.
为了改善锂离子电池隔膜的热力学和电化学等性能,以聚乙烯-乙烯醇锂(EVOH-Li)和热塑性聚氨酯(TPU)为原料,利用高压静电纺丝法进行双针头同时纺丝,制备了两种不同纤维丝相互缠结的EVOH-Li-TPU共纺膜。其中,EVOH-Li具有自由脱嵌的锂离子,可以增加电池隔膜的离子导电性;TPU具有良好的力学性能和韧性,可以增加锂离子电池隔膜的抗穿刺性,从而提高其安全性。研究了EVOH-Li-TPU共纺膜的微观形貌、力学性能、吸液率、孔隙率、热学性能及电化学性能,并与EVOH-Li和TPU单纺膜的相关性能进行对比。结果表明,EVOH-Li-TPU共纺膜的拉伸强度和断裂伸长率分别达到6.09 MPa和79.26%,孔隙率和吸液率分别达到84%和321%,室温离子电导率为4.41×10–4 S/cm,界面阻抗相比EVOH-Li和TPU单纺膜显著降低,电化学窗口为5.0 V,EVOH-Li-TPU共纺膜相比于EVOH-Li和TPU单纺膜,各种性能均有所增强。   相似文献   

17.
目的 为了显著提高AlCrFeCoNi2.1共晶高熵合金的室温力学性能,利用C合金化的方法研究不同碳含量对微观组织和室温拉伸性能的作用规律。方法 采用电弧熔炼–滴铸方法制备了不同C含量的(AlCrFeCoNi2.1)–x%C(x=0、1、2、3,原子数分数)共晶高熵合金,利用XRD、SEM和EDS等手段研究了不同C含量下微观组织、相结构和拉伸性能的变化规律。结果 添加C元素后,合金未形成新相,仍然由FCC相和B2相组成,但其微观组织呈现出由层片状向树枝晶转变的特征。随着C含量的增加,屈服强度和抗拉强度增大,但伸长率有一定的降低,其中(AlCrFeCoNi2.1)–3%C(原子数分数)合金的屈服强度可达到791 MPa,抗拉强度可达到1 332 MPa,同时伸长率仍有6.1%,与AlCrFeCoNi2.1合金相比,屈服强度和抗拉强度分别提高了99 MPa和296 MPa。结论 该强化效果主要来源于C原子的固溶强化作用和微观结构的改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号