首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freeze-etched rhabdoms and adjacent cytoplasmic cytoplasmic organelles from crayfish compound eyes have been studied for evidence of photoreceptor membrane cycling. The protoplasmic leaflet face (PF) of split photoreceptor membrane of the microvilli is richly particulate. The particles (92 +/- 16 A in diameter in surface fractures; 70 +/- 9 A in cross fractures; density about 8000/mum2) probably indicate rhodopsin molecule localization. Closely similar particles appear in membranes of pinocytotic vesicles, multivesicular bodies (MVB) and secondary lysosomes. In contrast other retinular cell membranes like plasma membrane remote from the rhabdom are quite distinct (60 +/- 23 A particle diameter, density ca 1000/mum2.) Histochemical tests for acid phosphatase demonstrate its presence in well-developed (but not early stage) MVBs, mixed lamellar vesicular bodies (LVB) and lamellar bodies. Density of PF particles decreases from 8000 in MVB to roughly 4500/mum2 in LVB indicating a degradative sequence from rhabdom to lamellar bodies. Membrane leaflet orientations show that primary endocytosis from microvilli must be followed by secondary endocytosis of fused coated vesicles to form MVB. Morphological evidence for photoreceptor membrane resynthesis has not been found yet in crayfish but some has been obtained in other crustaceans.  相似文献   

2.
During cell division in the Xenopus egg (diameter 1.25 mm) new cell membrane is formed in the furrow region (rate of growth approx 4-10(4) mum2/min). Freeze-fracture electron microscopy has produced the following data. Preexisting plasma membrane faces show a reversed polarity with respect to particle distribution, i.e. more particles are attached to the E-face (density 1600-2200 particles/mum2) than to the P-face (300 particles/mum2). A frequency histogram of 2331 measured intramembranous particles does not show a continuous range of sizes. The following sizes were very obvious: 95 A (12%), 125 A (30%) and 180 A (6%). At the tips of surface protrusions both the E- and the P- face are particle-free. Nascent cell membrane fracture faces are more difficult to obtain. The particle density is low (E-face 300-500 particles/mum2). Lowering the ambient temperature to 5 degrees C for approx. 5 mins does not change the normal particle pattern, but it improves the output in nascent membrane fracture faces. The fact that in the Xenopus egg preexisting and nascent membrane regions are continuous but nevertheless maintain their highly different particle densities is noteworthy. The freeze-fracture data are discussed in relation to, among other things, the known values of the specific resistances of these membrane regions.  相似文献   

3.
Pelagic amphipods belonging to the genus Phronima have four compound eyes; two lateral eyes and two large transparent medial eyes which comprise the entire top of the head. The eyes are structurally similar but the crystalline cones of the medial eyes are more than twenty times as long as those of the lateral eyes, reaching 5 mm in a large animal. The dioptric system of each ommatidium consists of an unfaceted cornea, a layer of hypodermal cells, two rudimentary cone cells, two cells which surround and form the crystalline cone, and the cone itself. The cone and its surrounding cells penetrate the layer of accessory pigment cells which surrounds the retina. The fused rhabdom is formed by the five retinula cells but is separated from them by an extracellular palisade which is crossed by bridges. The retinula cell nuclei lie proximal to the basement membrane. Further proximally the bundle of retinula cell axons is crossed by a second basement membrane, which surrounds each axon with a collar. Medial and lateral eyes on each side of the head share a common lamina. The medial eyes of Phronima appear to be a solution to the problem of remaining inconspicuous to predators while still maintaining sensitivity and resolution.  相似文献   

4.
In rhodopsin, the 11-cis-retinal chromophore forms a complex with Lys296 of opsin via a protonated Schiff base. Absorption of light initiates the activation of rhodopsin by cis/trans photoisomerization of retinal. Thermal relaxation through different intermediates leads into the metarhodopsin states which bind and activate transducin (Gt) and rhodopsin kinase (RK). all-trans-Retinal also recombines with opsin independent of light, forming activating species of the receptor. In this study, we examined the mechanism by which all-trans-retinal activates opsin. To exclude other amines except active site Lys296 from formation of Schiff bases, we reductively methylated rhodopsin (PM-rhodopsin), which we then bleached to generate PM-opsin. Using spectroscopic methods and a Gt activation assay, we found that all-trans-retinal interacted with PM-opsin, producing a noncovalent complex that activated Gt. The residual nucleotide exchange in Gt catalyzed by opsin was approximately 1/250 lower relative to that of photoactivated rhodopsin (pH 8.0, 23 degrees C). Addition of equimolar all-trans-retinal led to an occupancy of one-tenth of the putative retinal binding site(s) of opsin and enhanced the Gt activation rate 2-fold. When the concentration of all-trans-retinal was increased to saturation, the Gt activation rate of the opsin/all-trans-retinal complex was approximately 1/33 lower compared to that of photoactivated rhodopsin. We conclude that all-trans-retinal can form a noncovalent complex with opsin that activates Gt by different mechanisms than photolyzed rhodopsin.  相似文献   

5.
Absorbance changes were monitored from 250 to 650 nm during the first microsecond after photolysis of detergent suspensions of bovine rhodopsin at 20 degrees C. Global analysis of the resulting data produced difference spectra for bathorhodopsin, BSI and lumirhodopsin which give the change in absorbance of the aromatic amino acid side chains in these photointermediates relative to rhodopsin. These spectra show that the significant bleaching of absorbance near 280 nm, which has been seen previously for the lumirhodopsin, metarhodopsin I and metarhodopsin II intermediates, extends to times as early as bathorhodopsin. Because no corresponding absorbance increase is observed in the 250-275 nm region, the earliest bleaching of the 280 nm absorbance in rhodopsin is attributed to disruption of a hyperchromic interaction affecting Trp265. Partial decay of this 280 nm bleaching as bathorhodopsin converts to BSI takes place maximally near 290 nm, where Trp265 has been shown to absorb, and could be due to the ring of the retinylidene chromophore resuming a position at the BSI stage that reestablishes the hyperchromic interaction with Trp265. A subsequent change in the 250-300 nm region, which has no counterpart in the visible chromophore bands, indicates the possible presence of a protein-localized process as lumirhodopsin is formed.  相似文献   

6.
Dietary deficiency in the retinoid precursors of the visual pigment chromophore 11-cis retinal results in the synthesis of photoreceptor outer segments containing opsin in excess of the vitamin A available for rhodopsin regeneration. This suggests that vitamin A-free opsin may be incorporated into newly synthesized outer segment disc membranes. If this opsin is functionally intact, it should be possible convert it to rhodopsin in vivo by providing the appropriate retinoids, and the resulting rhodopsin should should be able to mediate visual transduction. Experiments were conducted to evaluate this possibility and to identify the rate-limiting steps in photoreceptor recovery from retinoid depletion. Rates were maintained on diets either containing or lacking retinoid precursors of 11-cis retinal for 23 weeks, at which time outer segment opsin content greatly exceeded the availability of visual cycle retinoids in the retina. The retinoid-deprived animals were then each given a single intramuscular injection of all-trans retinol. At various time intervals after retinol administration, electroretinograms (ERGs) were recorded on some rats, and retinal rhodopsin contents were determined in others. At similar time intervals, blood and retinal pigment epithelial (RPE) retinoid levels and photoreceptor outer segment size were also determined. No significant increase in retinal rhodopsin content was observed up to 8 hr after injection, despite the fact that by 3 hr, blood retinol levels had recovered to more than 30% of normal. By 1 day after injection, however, rhodopsin levels had recovered to 30% of normal and ERG responses showed increases in visual sensitivity commensurate with the recovery of rhodopsin. The lag in rhodopsin recovery was apparently due to delayed uptake of retinol from the blood by the RPE. Photoreceptor outer segment size was reduced by over 50% in the retinoid- deprived rats and did not begin to recover by 1 day. By 1 week, however, outer segment size had returned to an average of 65% of normal. Commensurate with this regrowth of the outer segments, both rhodopsin levels and visual sensitivity increased between 1 and 7 days after vitamin A administration. Because the rates of recovery in rhodopsin levels and visual sensitivity greatly exceeded the normal rate of new opsin synthesis at short time intervals after vitamin A repletion, it appears that the opsin incorporated into the disc membranes of retinoid-deprived rats is able to form functional rhodopsin in vivo when the chromophore is supplied. Regrowth of the outer segments back to their normal size is required for full recovery of visual sensitivity.  相似文献   

7.
A structural model is constructed for the integral membrane protein, sensory rhodopsin I (SRI), the phototaxis receptor of the archaeon Halobacterium salinarium. The model is built on the template of the homologous bacteriorhodopsin (BR). The modeling procedure includes sequence alignment, a side chain rotamer search and simulated annealing by restricted molecular dynamics. The structure is in general agreement with previous results from mutagenesis experiments, chromophore substitution and room and cryogenic temperature spectroscopy. In particular, a residue near the beta-ionone ring of the retinylidene chromophore is found to be critical in maintaining the proper isomeric conformation of the chromophore; a layer of residues lying on the cytoplasmic side of the chromophore pocket is found to modulate the restraints around the C13 region of the chromophore, affecting the isomerizations around its 13 = 14 bond that are important to the protein's activity. The restraints in these regions are more stringent in SRI than in BR. The tightened restraints are chiefly due to van der Waals interactions, where the attractive and repulsive components play separable roles. Aromatic residues account for a majority of the restrictive interactions. It is hypothesized that the enhanced barriers due to these restrictions regulate the progress of SRI's photocycle, so that it can couple with the phototaxis reaction chain in the bacterium. A possibility is also suggested that conformational changes of the protein provide the signal recognized by the transducer.  相似文献   

8.
Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved.  相似文献   

9.
Activation of the visual pigment rhodopsin involves both steric and electrostatic interactions between the chromophore and opsin within the retinal-binding site. Removal of the C9 methyl group of 11-cis-retinal inhibits light-dependent activation of the G protein, transducin, suggesting a direct steric contact. More recently, we have shown that steric interactions lead to receptor activation when Gly121 in the middle of transmembrane helix 3 is replaced by larger hydrophobic residues. In order to understand in more detail the role of the C9 methyl group of retinal in the structure and function of rhodopsin, we first studied the properties of recombinant 9-dm-Rho (opsin reconstituted with 11-cis-9-demethylretinal). The 9-dm-Rho pigment displayed a blue-shifted lambdamax, increased hydroxylamine reactivity, and decreased ability to activate transducin. These properties are consistent with the hypothesis that the C9 methyl group is a crucial structural anchor for the correct docking of the chromophore in its binding site. Next, we investigated the possible interaction between Gly121 of opsin and the C9 methyl group of retinal by characterizing recombinant pigments produced by combining mutant opsins (G121A, -V, -I, -L, and -W) with 11-cis-9-demethylretinal. Mutant opsins G121I, -L, and -W failed to bind the chromophore. However, the double mutant G121L/F261A bound 11-cis-9-demethylretinal to form a stable pigment with a lambdamax of 451 nm. When activity was assayed in membranes, the reduction in transducin activation by 9-dm-Rho caused by the lack of a C9 methyl group on the chromophore could be partially restored by replacing Gly121 with a bulky residue (leucine, isoleucine, or tryptophan). These results support a model of receptor activation that involves steric interaction between the C9 methyl group of the chromophore and the opsin in the vicinity of Gly121 on transmembrane helix 3.  相似文献   

10.
The genes coding for bacterioopsin, haloopsin, and sensory opsin I of a halobacterial isolate from the Red Sea called Halobacterium sp. strain SG1 have been cloned and sequenced. The deduced protein sequences were aligned to the previously known halobacterial retinal proteins. The addition of these new sequences lowered the number of conserved residues to only 23 amino acids, or 8% of the alignment. Data base searches with two highly conserved peptides as well as with an alignment profile yielded no significant similarity to any other protein, so the halobacterial retinal proteins should be regarded as a distinct protein family. The protein alignment was used to make predictions about the structure of the retinal proteins as well as about the amino acids in contact with retinal proteins. These results were in excellent agreement with the structural model of bacteriorhodopsin of Halobacterium halobium as well as with mutant studies, indicating that (i) structure predictions based on the sequences of a membrane protein family can be quite accurate; (ii) halorhodopsin and sensory rhodopsin I have tertiary structures similar to that of bacteriorhodopsin; (iii) conserved amino acids do not take part in reactions specific for one group of proteins, e.g., proton translocation for bacteriorhodopsins, but have a crucial role in determining the conformation and reactions of the chromophore; and (iv) the general mode of action (light-induced chromophore and protein movements) is the same for all halobacterial retinal proteins, ion pumps as well as sensors.  相似文献   

11.
Absorption of photons by pigments in photoreceptor cells results in photoisomerization of the chromophore, 11-cis-retinal, to all-trans-retinal and activation of opsin. Photolysed chromophore is converted back to the 11-cis-configuration via several enzymatic steps in photoreceptor and retinal pigment epithelial cells. We investigated the levels of retinoids in mouse retina during constant illumination and regeneration in the dark as a means of obtaining more information about the rate-limiting step of the visual cycle and about cycle intermediates that could be responsible for desensitization of the visual system. All-trans-retinal accumulated in the retinas during constant illumination and following flash illumination. Decay of all-trans-retinal in the dark following constant illumination occurred without substantial accumulation of all-trans-retinal, generated by constant approximately equal to visual pigment regeneration (t1/2 approximately 5 and t1/2 approximately 7 min, respectively). All-trans-retinal, generated by constant illumination, decayed approximately 3 times more rapidly than that generated by a flash and, as shown previously, the rate of rhodopsin regeneration following a flash was approximately 4 times slower than after constant illumination. The retinyl ester pool (> 95% all-trans-retinyl ester) did not show a statistically significant change in size or composition during illumination. In addition, constant illumination increased the amount of photoreceptor membrane-associated arrestin. The results suggest that the rate-limiting step of the visual cycle is the reduction of all-trans-retinal to all-trans-retinol by all-trans-retinol dehydrogenase. The accumulation of all-trans-retinal during illumination may be responsible, in part, for the reduction in sensitivity of the visual system that accompanies photobleaching and may contribute to the development of retinal pathology associated with light damage and aging.  相似文献   

12.
Through low-temperature spectroscopy and G-protein (transducin) activating experiments, we have investigated molecular properties of chicken blue, the cone visual pigment present in chicken blue-sensitive cones, and compared them with those of the other cone visual pigments, chicken green and chicken red (iodopsin), and rod visual pigment rhodopsin. Irradiation of chicken blue at -196 degrees C results in formation of a batho intermediate which then converts to BL, lumi, meta I, meta II, and meta III intermediates with the transition temperatures of -160, -110, -40, -20, and -10 degrees C. Batho intermediate exhibits an unique absorption spectrum having vibrational fine structure, suggesting that the chromophore of batho intermediate is in a C6-C7 conformation more restricted than those of chicken blue and its isopigment. As reflected by the difference in maxima of the original pigments, the absorption maxima of batho, BL, and lumi intermediates of chicken blue are located at wavelengths considerably shorter than those of the respective intermediates of chicken green, red and rhodopsin, but the maxima of meta I, meta II, and meta III are similar to those of the other visual pigments. These facts indicate that during the lumi-to-meta I transition, retinal chromophore changes its original position relative to the amino acid residues which regulate the maxima of original pigments through electrostatic interactions. Using time-resolved low-temperature spectroscopy, the decay rates of meta II and meta III intermediates of chicken blue are estimated to be similar to those of chicken red and green, but considerably faster than those of rhodopsin. Efficiency in activating transducin by the irradiated chicken blue is greatly diminished as the time before its addition to the reaction mixture containing transducin and GTP increases, while that by irradiated rhodopsin is not. The time profile is almost identical with those observed in chicken red and green. Thus, the faster decay of enzymatically active state is common in cone visual pigments, independent of their spectral sensitivity.  相似文献   

13.
Expression of cell surface antigens of the neural cell adhesion molecule (N-CAM) class was recently shown to be shared by both fetal and neoplastic neuroendocrine cells, including those of the lung. We investigated the expression and localization of MOC-1 antigen on small-cell (neuroendocrine) lung carcinoma cell lines with immunohistochemical methods at the light (LM) and electron microscopy (EM) level and by Western blot. At LM level, using monoclonal antibody (MAb) MOC-1 with the ABC method and immunofluorescence, positive staining was observed on surfaces of cells from all tumor lines examined. Strongest immunostaining was found on cell surfaces of pulmonary small-cell carcinoma-derived cell line NCI-H69 with the majority of cells showing positive staining. An adherent variant of NCI-H69 cell line, H69V, exhibited positive staining in about 60% of cells, whereas only occasional cells of NCI-H727 cell line derived from pulmonary carcinoid tumor were positive for MOC-1 antigen. Western blot analysis confirmed these findings, showing a strong MOC-1-specific band in cell extracts of NCI-H69, with weaker band densities for H69V and NCI-H727. Immunoelectron microscopy (IEM) revealed that MOC-1 was not uniformly distributed on the outer surface of plasma membrane; immunogold particles appeared concentrated in areas of thick cell surface "fuzz" coating, surface microvilli, and in areas of cell-cell contact. In some cells, areas of plasma membrane invaginations and a few intracytoplasmic vesicles were also labeled, suggesting endocytosis. Surface labeling for SEM confirmed the finding of more dense labeling over the microvilli, cell membrane folds, and in areas of cell-cell contact. The cell lines derived from pulmonary neuroendocrine cell tumors can provide a useful model to study the role and function of neural adhesion molecules in pulmonary neoplasia and during lung development.  相似文献   

14.
A mutation in the gene for the rod photoreceptor molecule rhodopsin causes congenital night blindness. The mutation results in a replacement of Gly90 by an aspartic acid residue. Two molecular mechanisms have been proposed to explain the physiology of affected rod cells. One involves constitutive activity of the G90D mutant opsin [Rao, V. R., Cohen, G. B., & Oprian, D. D. (1994) Nature 367, 639-642]. A second involves increased photoreceptor noise caused by thermal isomerization of the G90D pigment chromophore [Sieving, P. A., Richards, J. E., Naarendorp F., Bingham, E. L., Scott, K., & Alpern, M. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 880-884]. Based on existing models of rhodopsin and in vitro biochemical studies of site-directed mutants, it appears likely that Gly90 is in the immediate proximity of the Schiff base chromophore linkage. We have studied in detail the mutant pigments G90D and G90D/E113A using biochemical and Fourier-transform infrared (FTIR) spectroscopic methods. The photoproduct of mutant pigment G90D, which absorbs maximally at 468 nm and contains a protonated Schiff base linkage, can activate transducin. However, the active photoproduct decays rapidly to opsin and free all-trans-retinal. FTIR studies of mutant G90D show that the dark state of the pigment has several structural features of metarhodopsin II, the active form of rhodopsin. These include a protonated carboxylic acid group at position Glu113 and increased hydrogen-bond strength of Asp83. Additional results, which relate to the structure of the active G90D photoproduct, are also reported. Taken together, these results may be relevant to understanding the molecular mechanism of congenital night blindness caused by the G90D mutation in human rhodopsin.  相似文献   

15.
RhoG is a member of the Rho family of GTPases that shares 72% and 62% sequence identity with Rac1 and Cdc42Hs, respectively. We have expressed mutant RhoG proteins fused to the green fluorescent protein and analyzed subsequent changes in cell surface morphology and modifications of cytoskeletal structures. In rat and mouse fibroblasts, green fluorescent protein chimera and endogenous RhoG proteins colocalize according to a tubular cytoplasmic pattern, with perinuclear accumulation and local concentration at the plasma membrane. Constitutively active RhoG proteins produce morphological and cytoskeletal changes similar to those elicited by a simultaneous activation of Rac1 and Cdc42Hs, i.e., the formation of ruffles, lamellipodia, filopodia, and partial loss of stress fibers. In addition, RhoG and Cdc42Hs promote the formation of microvilli at the cell apical membrane. RhoG-dependent events are not mediated through a direct interaction with Rac1 and Cdc42Hs targets such as PAK-1, POR1, or WASP proteins but require endogenous Rac1 and Cdc42Hs activities: coexpression of a dominant negative Rac1 impairs membrane ruffling and lamellipodia but not filopodia or microvilli formation. Conversely, coexpression of a dominant negative Cdc42Hs only blocks microvilli and filopodia, but not membrane ruffling and lamellipodia. Microtubule depolymerization upon nocodazole treatment leads to a loss of RhoG protein from the cell periphery associated with a reversal of the RhoG phenotype, whereas PDGF or bradykinin stimulation of nocodazole-treated cells could still promote Rac1- and Cdc42Hs-dependent cytoskeletal reorganization. Therefore, our data demonstrate that RhoG controls a pathway that requires the microtubule network and activates Rac1 and Cdc42Hs independently of their growth factor signaling pathways.  相似文献   

16.
Descemet''s membrane as membranous support in RPE/IPE transplantation   总被引:1,自引:0,他引:1  
PURPOSE: The correct orientation of retinal pigment epithelium (RPE) cells is necessary for the integrity and proper function of the retina. For transplantation of RPE/iris pigment epithelium (IPE) grafts to the subretinal space in age-related macular degeneration, this cellular orientation is most effectively provided by a membranous support. The goal of this study was to establish an autologous or homologous membrane as a substratum for the growth of RPE/IPE. METHODS: Porcine and bovine RPE and IPE were placed in primary culture on a dissected sheet (5 x 5 mm) of autologous porcine and bovine Descemet's membrane in slide chambers and grown to confluence. RESULTS: RPE and IPE cells cultured on Descemet's membrane form an intact monolayer. Light and electron microscopy showed the formation of both an intact monolayer and microvilli in both cell types. CONCLUSION: Since the slow host-graft rejection appears to play an important role in the failure of RPE transplantation in the subretinal space, it is critical to be able to transplant autologous materials. The techniques presented here establish a novel means to culture RPE or IPE cells on autologous Descemet's membrane where they form a "cell monolayer patch," consisting of a fragment of Descemet's membrane with cultured RPE or IPE, which can be easily manipulated and transplanted, using an established glass pipette method.  相似文献   

17.
Laser-induced optoacoustic measurements were performed with bovine rhodopsin in the temperature range 5-32 degrees C in its natural environment (i.e., in washed membranes) as well as solubilized in dodecyl-beta-D-maltoside. A signal deconvolution procedure using a simple sequential kinetic scheme for the photobaric time evolution revealed, in the case of the washed membranes, the presence of an intermediate with a 14-ns lifetime at 25 degrees C, of the same order as that reported for the BSI intermediate in solubilized rhodopsin (Hug, S. J., W. J. Lewis, C. M. Einterz, T. E. Thorgeirsson, and D. S. Kliger. 1990. Nanosecond photolysis of rhodopsin: evidence for a new, blue-shifted intermediate. Biochemistry. 29:1475-1485), with an energy content of (85 +/- 20) kJ/mol, and accompanied by an expansion of 26 +/- 3 ml/mol. The difference in energy content between BSI and the next transient lumi was estimated in only -1 +/- 5 kJ/mol, concomitant with an expansion of 9 +/- 3 ml/mol. Thus, this transition, which according to literature involves an equilibrium, should be controlled by an entropic change, rather than by an enthalpic difference. This is supported by the fact that both activation parameters for the decay of batho and BSI decrease upon solubilization. For detergent-solubilized rhodopsin, two time constants were enough to fit the sample signal. A short lifetime ascribable to BSI was not detected in this case. For the first intermediate (probably batho in equilibrium with BSI), an energy content of 50 +/- 20 kJ/mol and an expansion of 20 +/- 1 ml/mol, and for lumi an energy content of 11 +/- 20 kJ/mol and a further expansion of 11 +/- 2 ml/mol were determined. Thus, the intermediates of the membrane-embedded form of rhodopsin (in contrast to solubilized samples) are kept in a higher energy level, although the total expansion from rhodopsin to lumi is similar for both conditions (35 +/- 6 and 31 +/- 3 ml/mol). The expansions are interpreted as protein reorganization processes as a consequence of the photoisomerization of the chromophore. As a result, weak interactions are probably perturbed and the protein gains conformational flexibility.  相似文献   

18.
Spectral tuning by visual pigments involves the modulation of the physical properties of the chromophore (11-cis-retinal) by amino acid side chains that compose the chromophore-binding pocket. We identified 12 amino acid residues in the human blue cone pigment that might induce the required green-to-blue opsin shift. The simultaneous substitution of nine of these sites in rhodopsin (M86L, G90S, A117G, E122L, A124T, W265Y, A292S, A295S, and A299C) shifted the absorption maximum from 500 to 438 nm, accounting for 2,830 cm-1, or 80%, of the opsin shift between rhodopsin and the blue cone pigment. Raman spectroscopy of mutant pigments shows that the dielectric character and architecture of the chromophore-binding pocket are specifically altered. An increase in the number of dipolar side chains near the protonated Schiff base of retinal increases the ground-excited state energy gap via long range dipole-dipole Coulomb interaction. In addition, the W265Y substitution causes a decrease in solvent polarizability near the chromophore ring structure. Finally, two substitutions on transmembrane helix 3 (A117G and E122L) act in combination with the other substitutions to alter the binding-pocket structure, resulting in stronger interaction of the protonated Schiff base group with the surrounding dipolar groups and the counterion. Taken together, these results identify the amino acid side chains and the underlying physical mechanisms responsible for a majority of the opsin shift in blue visual pigments.  相似文献   

19.
Bacteriorhodopsin (BR) from Halobacterium salinarum as well as halorhodopsin (pHR) and sensory rhodopsin II (pSRII) from Natronobacterium pharaonis were functionally expressed in E. coli using the method of Shimono et al. IFEBS Lett. (1997) 420, 54-56]. The histidine tagged proteins were purified with yields up to 1.0 mg/l cell culture and characterized by ESI mass spectrometry and their photocycle. The pSRII and pHR photocycles were indistinguishable from the wild type proteins. The BR photocycle was considerably prolonged. pSOII is located in the cytoplasmic membrane and the C-terminus is oriented towards the cytoplasm as determined by immunogold labelling.  相似文献   

20.
Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within the C terminus of rhodopsin and model the effects of severe retinitis pigmentosa alleles on rhodopsin sorting. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Peptides that correspond to the C terminus of bovine (amino acids 324-348) and frog (amino acids 330-354) rhodopsin inhibited post-Golgi trafficking by 50% and 60%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network. Peptides corresponding to the cytoplasmic loops of rhodopsin and other control peptides had no effect. When three naturally occurring mutations: Q344ter (lacking the last five amino acids QVAPA), V345M, and P347S were introduced into the frog C-terminal peptide, the inhibitory activity of the peptides was no longer detectable. These observations suggest that the amino acids QVS(A)PA comprise a signal that is recognized by specific factors in the trans-Golgi network. A lack of recognition of this sequence, because of mutations in the last five amino acids causing autosomal dominant retinitis pigmentosa, most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号