首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of postnatal stress on mesolimbic dopamine (DA) functioning in 90-day-old mice were investigated. Postnatal stress consisted of 15 min daily exposure to clean bedding (CB) in the absence of the mother for the first two weeks of life. Controls were daily exposed to home cage bedding (HCB) in the absence of the mother. A single brief (5-10 min) exposure to restraint produced a clear-cut increase in DA metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT)) in the nucleus accumbens septi (NAS) of adult HCB but not CB mice. Moreover, when tested in an elevated plus maze, CB mice showed more exploration and reduced fearfulness in comparison with HCB mice. Taken together, these results indicate reduced emotional reactivity in adult mice repeatedly stressed during postnatal development. Moreover, HCB mice but not CB mice showed altered behavioral responsiveness to apomorphine following repeated restraint stress (10 daily 120 min) in adult life, although no difference in the behavioral response to either a low or a high dose of apomorphine was observed in adult unstressed mice of the CB and HCB groups. These results indicate that the effects of early experiences on brain DA functioning may not be evident in basal conditions and be revealed only under environmental pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The role of GABA receptors in regulating the mesolimbic dopamine (DA) system and drug reinforced behaviors has not been well characterized. Using fast-cyclic voltammetry, the effects of specific GABA receptor modulation on DA release in the nucleus accumbens (NAcc) and heroin self-administration (SA) behavior was investigated. The GABAA agonist muscimol, administered either intravenously or directly into the ventral tegmental area (VTA), significantly increased DA release in the NAcc in 7 of the 10 rats tested. DA release decreased in the remaining three rats; both effects were blocked by pretreatment with the GABAA receptor antagonist bicuculline. In contrast, the GABAB agonist baclofen decreased, while 2-OH-saclofen (a GABAB antagonist) increased DA release in the NAcc. However, when VTA GABAB receptors were previously activated or inactivated by microinjections of baclofen or 2-OH-saclofen, systemic injections of muscimol caused an inhibition of NAcc DA release. These results suggest that GABAA receptors may be co-localized on both DA neurons and non-DA (GABAergic) interneurons in the VTA, with the effects of GABAA determined by the net effect of both direct inhibition and indirect disinhibition of DA neurons. Finally, although a DA releaser, muscimol was neither self-administered in drug naive rats, nor did it substitute for heroin in rats previously trained to self-administer heroin, suggesting that GABAA receptors appear to play a complex role in mediating drug reinforcement, depending upon the dynamic functional state of GABAA receptors on both tegmental DA and non-DA neurons.  相似文献   

3.
The mesolimbic dopamine (DA) system is innately deficient in rats selectively bred for high alcohol drinking behavior compared with rats selectively bred for low alcohol drinking and unselected rats. In alcohol-preferring (P) rats, compared with alcohol-nonpreferring (NP) rats, this is evidenced by fewer DA neurons in the ventral tegmental area (VTA) projecting to the nucleus accumbens (ACB). Yet, despite this deficiency, DA release in the ACB is similar in P, NP, and Wistar rats. DA release is regulated by DA neuronal activity, and DA neurons fire tonically as well as in bursts. Burst firing has been shown to substantially enhance DA release compared with tonic firing. The present study was designed to test the hypothesis that the remaining VTA DA neurons in P rats have faster firing frequencies and/or burst fire more frequently than VTA DA neurons in Wistar rats. The spontaneous activity of VTA DA neurons was recorded in unanesthetized alcohol-naive P and Wistar rats. A conventional burst analysis on 500 consecutive action potentials revealed that P rats had a significantly (p < 0.05) greater percentage of action potentials in bursts when compared with Wistar rats (P: 50.9%, Wistar: 34.4%). Firing frequency and other burst parameters (burst interspike interval, burst length, interburst interval, and the number of action potentials per burst) did not distinguish the two groups of rats. The increased burst activity in P rats may represent a compensatory mechanism to maintain adequate basal levels of DA despite the deficiency in the mesolimbic DA system.  相似文献   

4.
There is good evidence that interference with the mesolimbic dopamine (DA) system results in impaired maternal responding in postpartum female rats. However, whether activation of the mesolimbic DA system is capable of promoting maternal behavior has not been investigated. This study examined whether increasing DA activity in various brain regions of pregnancy-terminated, naive female rats would stimulate the onset of maternal behavior. Experiments 1 and 2 examined the effects of microinjection of various doses (0, 0.2, or 0.5 μg/0.5 μl/side) of a D? DA receptor agonist, SKF 38393, or a D? DA receptor agonist, quinpirole, into the nucleus accumbens (NA) on latency to show full maternal behavior, and Experiment 3 determined the effects of SKF 38393 injection into a control site. Finally, because the medial preoptic area (MPOA) is also important for maternal behavior, receives DA input, and expresses DA receptors, the authors examined whether microinjection of SKF 38393 into MPOA was capable of stimulating the onset of maternal behavior. Results indicated that microinjection of SKF 38393 into either the NA or the MPOA facilitates maternal responding in pregnancy-terminated rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The effect of neonatal hippocampal lesions on behavioral sensitivity to amphetamine (AMPH) and dopamine (DA) release in the nucleus accumbens (NAc) were examined. The ventral hippocampus was damaged bilaterally by ibotenic acid on postnatal day 7 (PD7). Spontaneous exploration and AMPH-stimulated locomotor activity were examined on postnatal day 35 (PD35) and day 56 (PD56). Extracellular DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were sampled using in vivo microdialysis while simultaneously AMPH-stimulated locomotion was examined in freely moving rats on PD56. Spontaneous exploration increased in rats with hippocampal lesions relative to controls on PD56 but not PD35. AMPH (0, 0.187, 0.375, 0.75, 1.5, and 3 mg/kg) enhanced locomotion dose-dependently in both control and lesioned groups. Locomotor activity was higher in lesioned rats than controls following AMPH at the dose of 0.75 mg/kg on PD35 and at the doses of 1.5 and 3.0 mg/kg on PD56. The basal level of DA in the NAc was not different between the hippocampal and control groups. AMPH (1.5 mg/kg) induced hyperlocomotion in lesioned rats relative to controls. DA release in the NAc for both groups was enhanced following injections of AMPH. However, neonatal hippocampal lesions had no further enhancement on AMPH-stimulated release of DA as compared to the control group. The levels of DOPAC and HVA in the NAc were altered by AMPH but not lesions. The level of 5-HIAA was not influenced by either lesions or AMPH. The results of neonatal lesion-induced hyperlocomotion suggest that an emergence of behavioral hyperresponsiveness to AMPH was dependent on an interaction of lesions, age of examination, and dose of the drug. A dissociation between the effect of AMPH on lesion-enhanced hyperlocomotion and a lack of a lesion-enhanced DA release in the NAc suggest that presynaptic release of DA had no major contribution to lesion-enhanced DA transmission in the mesolimbic DA system.  相似文献   

6.
Opiate withdrawal has been correlated with decreased extracellular dopamine (DA) levels in the nucleus accumbens (NAC) of morphine-dependent rats. The authors tested the hypothesis that DA transmission plays a critical role in the induction of motivational and somatic withdrawal symptoms. First, the authors used a 6-hydroxydopamine-induced lesion of the NAC to chronically disrupt mesolimbic DA transmission. Second, global DA neurotransmission was acutely stimulated by the nonselective DA agonist (apomorphine) or inhibited by nonselective DA antagonists (droperidol or flupentixol). Morphine-dependent rats bearing 6-hydroxydopamine-induced lesions displayed naloxone-precipitated motivational and somatic withdrawal symptoms similar to those of sham-lesioned rats. Administration of apomorphine did not reduce naloxone-induced opiate withdrawal. Moreover, in total absence of naloxone, DA antagonists did not precipitate either conditioned place aversion or somatic abstinence signs in dependent rats. Taken together, these findings suggested that DA transmission is not critical for the induction of opiate withdrawal syndrome. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
With in vivo microvoltammetry, the dopamine (DA) receptor antagonists, clozapine (D4/D2), haloperidol (D2) and the selective D4 antagonist, PNU-101387G, were evaluated for their effects on DA and serotonin (5-HT) release within A10 neuronal terminal fields [mesocortical, prefrontal cortex (PFC), mesolimbic, nucleus accumbens, (NAcc)] and within A9 neuronal terminal fields [nigrostriatal, caudate putamen (CPU)], in chloral hydrate anesthetized rats. Clozapine, which also has 5-HT2 receptor antagonist properties, significantly (p < 0.001) increased DA release within A10 terminal fields, PFC and NAcc; DA release was not increased by clozapine within A9 terminals, CPU. Serotonin release was significantly (p < 0.001) increased by clozapine within A10 and A9 terminal fields. Haloperidol significantly (p < 0.001) increased DA release within PFC, dramatically and significantly (p < 0.001) increased DA release within CPU, but not within NAcc; haloperidol had a small but statistically significant (p < 0.05) increase on 5-HT release within PFC [only at the highest dose studied (2.5 mg/kg)] and within CPU [only at the lowest dose studied 1.0 mg/kg) (p < 0.05)]. The selective D4 antagonist, PNU-101387G dramatically and significantly (p < 0.001) increased DA release within PFC, modestly, but significantly (p < 0.001) increased DA release within CPU, did not alter DA release within NAcc at the lowest dose studied (1.0 mg/kg) and significantly (p < 0.05) decreased DA release within NAcc at the highest dose studied (1.0 mg/kg). The selective D4 antagonist did not affect 5-HT release within either A10 or A9 terminal fields. The present data are discussed in terms of the neurochemistry, antipsychotic activity, and side effect profiles of clozapine and haloperidol, in order to provide comparative profiles for a selective D4 antagonist, PNU-101387G.  相似文献   

8.
The importance of extrapyramidal and mesolimbic function for circling behaviour was investigated by placing 6-hydroxydopamine (6-OHDA) and electrolesions in the cell bodies, axons and terminals of each system. Circling behaviour was weak when 6-OHDA was placed at the centre of the substantia nigra (SN), but the characteristic contralateral/ipsilateral turning to apomorphine/amphetamine were recorded. Circling was more marked when 6-OHDA was placed anterior to the SN but was generally absent following injections posterior to the SN. However, 6-OHDA placed in the medial forebrain bundle in the lateral hypothalamus resulted in intense contralateral/ipsilateral turning to apomorphine/amphetamine. Generally, the intensity of circling responses was related to the degree of striatal dopamine (DA) depletion but the more effective lesions also caused reductions in mesolimbic DA content. However, circling was not observed following any 6-OHDA injection into the mesolimbic DA system and it is concluded that mesolimbic DA function is not essential for the initiation of circling. In contrast to the 6-OHDA lesions, rats circled ipsilateral to both apomorphine and amphetamine when the SN was damaged by electrocoagulation to cause marked depletion of striatal dopamine. Lesser depletions of striatal dopamine after electrocoagulation in different regions of the medial forebrain bundle were associated with a lower intensity of ipsilateral circling to both drugs. In general, the differences between 6-OHDA and electrolesions could not be explained by additional damage to ascending noradrenaline or 5-hydroxytryptamine pathways. Lower doses of apomorphine were effective in the 6-OHDA circling rats, and the ipsilateral striatum of such rats was more sensitive to directly applied DA. Higher doses of apomorphine were required to produce circling after chronic electrolesions which rendered the ipsilateral striatum insensitive to DA. The contralateral circling to apomorphine after 6-OHDA lesions was abolished by chronic but not by acute electrolesion of the SN. It is suggested that electrolesions of the SN cause different effects to 6-OHDA because they destroy neuronal pathways in addition to the dopaminergic nigrostriatal tract. These appear to be required for the expression of circling behaviour caused by stimulation of the denervated striatum. Whereas 6-OHDA lesions result in super-sensitivity of the denervated strital DA receptors, electrolesions may cause a hypo-sensitivity of the same receptor sites.  相似文献   

9.
Exposure of rats to 2 hours of cold water restraint is associated with both macroscopic and microscopic gastric mucosal injury. Administration of neurotensin into the lateral ventricle or into the nucleus accumbens, one of the mesolimbic dopamine system nuclei, is associated with protection when given before exposure to cold water restraint. Under conditions of cold water restraint, pretreatment with central neurotensin is associated with maintenance of gastric mucosal blood flow and an increase in endogenous gastric mucosal PGE2 activity. In addition, pretreatment with 6-hydroxy dopamine into the mesolimbic nuclei, which depletes them of endogenous dopamine, prior to exposure to cold water restraint, ameliorates the protective effect of central neurotensin. Centrally administered neurotensin inhibits basal, pentagastrin-, carbachol-, and 2-deoxy-D-glucose-induced but not histamine-induced gastric acid secretion. This antisecretory effect is ameliorated by parenteral pretreatment with haloperidol and domperidone. Taken together, these observations support the hypothesis that centrally administered neurotensin, particularly into the nuclei of the mesolimbic dopamine system, confers protection against gastric mucosal injury produced by 2 hours of cold water restraint. This affect may be due, in part, to inhibition of acid secretion and maintenance of mucosal blood flow mediated by an increase in gastric mucosal PGE2 activity.  相似文献   

10.
Plasma profiles of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured during restraint stress on the day of pro-oestrus; these profiles were considered in relation to ovulation rate on the next day. Rats bearing a permanent jugular vein cannula were subjected to restraint, which was started 0, 1 or 2 h before the presumed onset of the LH surge and ended just before the beginning of the dark period. Exposure to restraint resulted in a suppression of the secretion of both gonadotrophins on the day of pro-oestrus. Suppression of the LH surge was virtually complete (plasma LH < or = 0.2 ng/ml) in 15 out of 32 stressed rats, and the ovaries of these rats contained graafian follicles with oocytes in germinal vesicle stage. In these rats, the LH surge did not occur 24 h later. In the remaining 17 rats, restraint resulted in a considerable suppression of the LH surge. Of these rats, five had an ovulation rate of 100% and four ovulated partially. In unruptured follicles of the latter, the oocyte had not resumed meiosis and the follicle wall was not luteinized. In the remaining eight rats with a reduced LH surge, ovulations had not occurred and graafian follicles were unaffected. The results of this study indicate that during pro-oestrus restraint stress suppresses and does not delay the release of preovulatory gonadotrophins. Partial suppression of LH by restraint does not result in induction of meiotic resumption without subsequent ovulation or in luteinized unruptured follicles.  相似文献   

11.
The effects of acute and repeated restraint stress on nociception, as measured by the tail-flick latency, were studied in adult male and female rats. After the exposure to a single restraint session, both male and female rats presented an increased latency in the tail-flick test. On the other hand, chronically stressed females presented a performance similar to the control group, whereas chronically stressed male rats responded to restraint with a decrease in the tail-flick latency. This response could be determined by the chronic treatment itself or by the restraint done just before the measurement. Thus, the effect of chronic stress upon basal tail-flick latency was evaluated. In male rats, this latency was significantly decreased in the stressed animals compared with the control group. In female rats, no difference between those groups was observed. Therefore, the results suggest that: (a) acute restraint stress induces an analgesic response in both male and female rats, and (b) there is a gender-specific nociceptive response induced by repeated restraint stress with a hyperalgesic effect in response to stress only in males.  相似文献   

12.
The dopamine (DA) D3 receptor antagonist PD 58491 [3-[4-[1-[4-[2-[4-(3-diethylaminopropoxy)phenyl]benzoimidazol++ +-1-yl-butyl]-1H-benzoimidazol-2-yl]phenoxy]propyl]diethylamine] bound with high affinity and selectivity to recombinant human DA D3 versus D2L and D4.2 receptors transfected into Chinese hamster ovary cells: Ki values of 19.5 nM versus 2,362 and >3,000 nM, respectively. In contrast, the putative DA D3 receptor antagonist (+)-AJ76 displayed low affinity and selectivity for D3 versus D2L and D4.2 receptors (91 nM vs. 253 and 193 nM, respectively). In vitro, PD 58491 (1 nM-1 microM) exhibited D3 receptor antagonist activity, reversing the quinpirole (10 nM)-induced stimulation of [3H]thymidine uptake in D3 CHOpro-5 cells, but did not have any significant intrinsic activity by itself in this assay. PD 58491 did not decrease the gamma-butyrolactone-induced increase in DA synthesis (L-3,4-dihydroxyphenylalanine accumulation) in rat striatum, indicating that the compound possessed no in vivo DA D2/D3 receptor agonist action at DA autoreceptors. PD 58491 (3-30 mg/kg, i.p.) generally did not alter DA or serotonin synthesis in either the striatum or mesolimbic region of rat brain. The D3-preferring agonist PD 128907 decreased DA synthesis in striatum and mesolimbic regions, and this effect was attenuated by pretreatment with PD 58491. These findings support the hypothesis that DA D3 autoreceptors may in part modulate the synthesis and release of DA in striatum and mesolimbic regions.  相似文献   

13.
Both mesolimbic dopamine (DA) and the anterior cingulate cortex (ACC) have been implicated in enabling animals to expend effort to obtain greater reward. To investigate the role of the DA pathway to ACC in working for reward, the authors tested rats on a cost-benefit T-maze paradigm in which they could either climb a barrier to obtain large reward in 1 arm (high reward [HR]) or select the low-effort alternative containing less reward (low reward [LR]). Surprisingly, ACC DA depletions had no effect on choice performance. Manipulations of barrier and reward sizes demonstrated that lesioned rats were as sensitive to the costs and benefits of the alternatives as controls. These results imply that the DA projection to ACC is not involved in guiding effort-related decisions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
BACKGROUND & AIMS: Patients with inflammatory bowel disease have symptoms of irritable bowel syndrome (IBS) with a higher than expected prevalence. Stress is an important factor in the pathogenesis of IBS. Thus, previous inflammation may predispose to IBS by rendering the bowel more susceptible to the impact of stress. The aim of this study was to examine the effect of previous colitis on stress-induced responses in rats. METHODS: Acute colitis was induced in rats by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and the rats were allowed to recover for 6 weeks before application of mild restraint stress for 3 consecutive days. In vitro measurements included myeloperoxidase activity, plasma corticosterone levels, interleukin 1 beta messenger RNA expression, and [3H]noradrenaline release from the myenteric plexus. RESULTS: Six weeks after administration of TNBS, stress caused a significant increase in myeloperoxidase activity in TNBS-treated rats but not in stressed controls; plasma corticosterone responses were similar. Stress also caused an exaggerated and significant suppression of [3H]noradrenaline release in TNBS-treated stressed rats compared with stressed controls. This was accompanied by a significant decrease in interleukin 1 beta messenger RNA expression in the colon. CONCLUSIONS: Previous colitis rendered the colon more susceptible to effects of stress on enteric nerve function and also increased some parameters of inflammation in response to stress.  相似文献   

15.
Five groups of ovariectomized rats were tested during in vivo microdialysis, and concentrations of dopamine (DA) and its metabolites were determined in dialysate. In striatum, DA increased more in hormone-primed ovariectomized female rats pacing copulation than in those engaging in sex that could not pace, those that were hormone primed but tested without a male present, or oil-treated groups. Administration of estrogen before microdialysis resulted in enhanced striatal DA in response to a male rat relative to the animals tested without a male. Female rats that were pacing sexual behavior also exhibited a greater increase in accumbens DA than did the no-male, estrogen-primed, or oil-treated groups. Nonpacing animals displayed a significant decrease in DA from accumbens 30 min after introduction of the male rat but otherwise were not different from pacing animals. Estrogen-treated animals also had an enhanced increase in accumbens DA compared with oil-treated rats. These data suggest that DA release in the striatum and accumbens is dependent on the context in which sexual behavior occurs and that estrogen may in part modulate these dopaminergic responses. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Guinea pig pups that were separated from their mothers and placed into a novel environment for 90 min showed an increase in dopamine (DA) turnover (ratio of metabolites to DA) in the septum compared with undisturbed baseline controls. Pups placed into the novel environment with their mothers exhibited an intermediate level of DA turnover. After 24 hr of separation in the novel environment, pups' DA turnover in the septum had returned to the baseline level. DA turnover in the caudate nucleus was unaffected by these procedures. Also, turnover in both septum and caudate nucleus when pups were not separated was positively correlated with the number of vocalizations emitted during 30 min of separation. These results closely parallel findings in separated monkeys and indicate that the guinea pig represents a useful rodent model for studying such effects. That elevated DA turnover during separation occurred in the septum suggests involvement of the mesolimbic system. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
18.
The systemic administration of thyrotropin-releasing hormone (TRH) to rats elicits locomotor activation, wet dog shakes, jaw movements, paw licking and tail rattle. Central dopamine (DA) and 5-hydroxytryptamine (5-HT) systems and peripheral vagal afferents have been implicated in these responses. To define this circuitry further, the effects of lesions of these pathways on the behavioral responses elicited by intraperitoneal (IP) injections of TRH were assessed in rats. Lesions of the DAergic innervation of the nucleus accumbens did not affect the locomotor activation, wet dog shakes, paw licking, jaw movements or tail rattle elicited by TRH. This is consistent with our in vivo microdialysis finding that TRH did not affect the release of DA in the nucleus accumbens at a dose that strongly increased locomotor activity. Depletion of spinal 5-HT significantly decreased the wet dog shakes induced by TRH, while depletion of forebrain 5-HT had no effect on any behavior. Bilateral vagotomy did not affect the locomotor response to TRH or any of the other behaviors measured. Taken together these results suggest that the DAergic mesolimbic, the 5-HTergic projections to the forebrain and vagal afferent systems are not mediators of the behavioral responses to systemic TRH. In contrast, the raphe-spinal 5-HTergic projection system may serve to modulate the wet dog shakes elicited by this peptide.  相似文献   

19.
The receptor binding and biochemical effects of the putative dopamine (DA) partial agonist CI-1007 ([R(+)-1,2,3,6-tetrahydro-4-phenyl- 1-[(3-phenyl-3-cyclohexen-1-yl)methyl]pyridine] maleate) and potential antipsychotic were evaluated with a variety of biochemical methods. In receptor binding studies, CI-1007 bound to rat striatal DA receptors exhibiting a Ki of 3 nM as assessed by inhibition of [3H]N-propylnorapomorphine binding. CI-1007 also exhibited high affinity for cloned human D2L (Ki = 25.5 nM) and D3 (Ki = 16.6 nM) receptors with less affinity for D4.2 receptors (Ki = 90.9 nM). The affinity for serotonin-1A (5-HT-1A), alpha-2 adrenergic and 5-HT-2 receptors was moderate (submicromolar range) and slight or negligible for alpha-1, DA D1 and various other receptors. Unlike dopamine, the inhibition of [3H]spiperone binding was monophasic for CI-1007 and only slightly affected by the addition of Gpp-(NH)p. In vitro CI-1007 antagonized the forskolin-induced increases in cyclic AMP levels in GH4C1 cells expressing the human D2L receptor, having an intrinsic activity of 53% of that seen with the full agonist quinpirole. In vivo CI-1007 antagonized the gamma-butyrolactone (GBL)-induced accumulation of L-3,4-dihydroxyphenylalanine in striatum and mesolimbic regions of rat brain, causing a maximal 64% reversal in striatum, consistent with a partial agonist profile. In microdialysis studies it decreased DA overflow in both striatum and nucleus accumbens, indicating decreased release of DA. CI-1007 also reduced brain DA synthesis (DOPA accumulation), metabolism (DOPAC and HVA) and utilization (after tyrosine hydroxylase inhibition with alpha-methyl-p-tyrosine). CI-1007 did not affect striatal acetylcholine levels indicating lack of potent postsynaptic DA actions. CI-1007 seemed to be selective for DA neurons as it did not alter rat brain norepinephrine (NE) synthesis in the NE-enriched brainstem or NE utilization in the mesolimbic region. In addition, it did not affect in general 5-HT synthesis and metabolism in striatum and mesolimbic regions. These neurochemical results demonstrate that CI-1007 is a selective potent brain dopamine partial agonist with limited agonist activity at postsynaptic DA receptors.  相似文献   

20.
The effects of mesulergine (100 and 200 microg/kg s.c.), SB 206553 (1 and 2.5 mg/kg i.p.), RP 62203 (2.5 and 4 mg/kg i.p.) and ritanserin (630 microg/kg i.p.) were studied on the extracellular concentration of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens of chloral hydrate-anesthetized rats, using intracerebral microdialysis. Mesulergine, a non selective serotonin2C/2B/2A (5-HT2C/2B/2A) receptor antagonist, significantly increased DA release, which reached a peak level (+ 20%) 60 min after drug injection and slowly returned back to baseline values. Mesulergine also caused a dose-dependent increase in DOPAC outflow. Pretreatment with mesulergine (200 microg/kg) did not change the inhibition of DA release induced by apomorphine (100 microg/kg), whereas it prevented the reduction of DOPAC outflow induced by apomorphine (100 microg/kg). Administration of SB 206553, a selective blocker of 5-HT2C/2B receptors, dose-dependently increased DA outflow. The dose of 2.5 mg/kg SB 206553 caused a linear increase of DA output which reached a peak (+75%) 40 min after injection, while 1 mg/kg induced a more gradual increase of DA release which peaked (+54%) 60 min after administration of the drug. Treatment with RP 62203, a selective 5-HT2A receptor antagonist, did not produce any significant effect on DA outflow. Administration of ritanserin, a mixed 5-HT2A/2C receptor antagonist, did not cause any significant change of DA and DOPAC outflow. Taken together, these data indicate that selective blockade of 5-HT2/2B receptor subtypes increases DA release in the rat nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号