首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硅粉直接氮化反应合成氮化硅研究   总被引:15,自引:2,他引:15  
研究了硅粉直接氮化反应合成氮化硅粉末的工艺因素(包括硅粉粒度、氮化温度、成型压力、稀释剂含量等),借助XRD,SEM等测试手段测定和观察了氮化产物的物相组成和断口形貌.研究结果表明:硅粉在流动氮气氛下,高于1200℃氮化产物中氮含量明显增加;在氮化反应同时还伴随着硅粉的熔结过程,它阻碍硅粉的进一步氮化,其影响程度与氮化温度、氮化速度,素坯成型压力及硅粉粒度等工艺因素有关.在硅粉素坯中引入氮化硅作为稀释剂,提高了硅粉的氮化率,使产物中残留硅量降低;同样在实际生产中可以通过控制适当热处理制度(如分段保温、慢速升温),达到硅粉的完全氮化.在生产中批量合成了含氮量为32.5%,残留硅量为0.05%,主要为α相,含少量β相的针状、柱状的氮化硅.  相似文献   

2.
以平均粒径为2.8μm的硅粉为原料,添加氮化硅粉作为稀释剂,对常压氮气下直接氮化制备Si3N4粉的工艺进行了研究,借助于氮氧测定仪、XRD、SEM等检测方法,分析了硅粉常压直接氮化制备Si3N4粉过程中稀释剂种类、稀释剂添加比例、氮化温度、氮化时间等因素对硅的氮化过程的影响.研究结果表明:硅粉在流动常压氮气下,当氮化温度高于1410℃时,硅的转化率迅速增加,氮化产物中β相含量也增加;通过控制稀释剂的添加种类和添加比例、氮化时间和氮化温度,可合成高α相含量的Si3N4.采用平均粒径为2.8μm的硅粉,在常压氮气下,当添加30%的α-Si3N4粉作为稀释剂、氮化温度为1550℃、氮化时间为10min时,合成了氮含量为39.4%,游离硅为0.7%,主要为α相、含部分β相的Si3N4粉.  相似文献   

3.
采用自蔓燃高温合成方法(self-propagating high-temperature synthesis,简称SHS)合成氮化硅粉体,分析了自蔓燃高温合成氮化硅过程中氮气、温度、稀释剂与孔隙率等方面的影响。采用XRD研究相的组成,用SEM观察粉末的显微结构。研究结果表明:只要控制反应中的工艺参数,就可以采用自蔓燃得到不同相含量的Si3N4粉体;考虑到燃烧温度(Tcom),在氮化硅粉体的合成过程中,涉及到3个反应机制:低温机制,中温机制,高温机制;氮气压力下硅粉的自蔓燃合成反应,必须要引入Si3N4稀释剂,来控制反应温度和反应速度,获得不同相含量的粉体;NH4Cl在反应中分解,为反应提供了NH3,并与硅粉反应;压坯气孔率控制在30%~70%,否则反应不能进行。SHS法可以制备纯度很高的氮化硅粉体。此法较传统方法合成的氮化硅设备简单,成本低廉,纯度高,填充性好,烧结活性好。  相似文献   

4.
初始硅粉粒度对自蔓延高温合成氮化硅的影响   总被引:9,自引:1,他引:8  
研究了平均粒度分别为2,7.8和15.4μm的3种初始硅粉在氮气中的燃烧氮化规律。初始硅粉粒度越细,则在氮气中的燃烧温度高越高,燃烧滤蔓延速度越快,激活能也越低;较细的硅粉表面的硅蒸发通量大,psi高,易于形成延长方向与硅粉表面垂直的针状或柱状、纤维状晶体;而较粗的硅粉则易于形成氮化硅包覆层,且可以通过“包覆爆裂”机制继续进行二次氮化。较细的硅粉在氮气中的燃烧温度曲线上只出现一次燃烧峰,而较粗的硅  相似文献   

5.
反应烧结氮化硅是以普通的硅粉作原料(每公斤2.5元),用一般陶瓷成型的方法制成素坯,在通氮气的炉子中将素坯进行初步氮化。经初步氮化的坯体,可在各种机床上进行车、钻、刨、铣等机械加工。再将加工好的部件在1350℃和1450℃的温度下进行最后氮化,就得到所需的氮化硅制品。在整  相似文献   

6.
硅粉在高压氮气中自蔓延燃烧合成氮化硅   总被引:16,自引:0,他引:16  
本文对硅粉在高压氮气中的自蔓延燃烧合成(SHS)氮化硅粉末的行为进行了详细研究。结果表明:(1)在遥当条件下,硅粉在SHS过程中可以完全氮化,生成氮化硅,产物含氮量高,含氧量低,但为β相;(2)在硅粉SHS反应中,必须加入适量的Si_3N_4晶种;(3)硅的SHS燃烧波传播速度随氮气压力升高、反应物填装密度减小而增大,但与反应物组成和样品直径无关;(4)燃烧波温度随氮气压力升高、样品直径增大而升高,与反应物组成和填装密度无关。此外本文对产物形貌与上述各实验因素的关系也进行了研究。  相似文献   

7.
硅铁粉粒度对合成氮化硅铁的影响   总被引:1,自引:0,他引:1  
采用FeSi75为原料,利用直接氮化合成法制备了氮化硅铁粉末,研究了中位径(d50)分别为13.41μm、8.023μm和5.229μm的3种硅铁粉分别在1150℃、1250℃和1350℃保温9h处理后的氮化规律。借助XRD、SEM等测试手段测定和观察了产物的物相组成和显微形貌。结果表明:较细的硅铁粉(d50=5.229μm)氮化时,反应快速、剧烈,导致烧结严重,氮化效果差,而较粗硅铁粉(d50=13.41μm)氮化效果较好;较细硅铁粉氮化后易于形成须状、纤维状和柱状氮化硅晶体,较粗硅铁粉氮化后易于形成球状氮化硅团聚体。制备的氮化硅铁中有大量充满氮化硅的孔洞,产物中的Fe3Si与FexSi被其包围,这种结构有利于体现氮化硅铁的优异性能。  相似文献   

8.
在批林整风和批林批孔运动的推动下,我们初步研制了一种新型工程陶瓷——氮化硅。氮化硅有两种制品,一种是反应烧结氮化硅,一种是热压氮化硅。反应烧结氮化硅是用普通的硅粉作原料,用一般陶瓷材料成型的方法制成素坯,再将素坯在通有氮气的炉子里进行初步氮化。经初步氮化的素坯有一定的强度,能进行车、钳、刨等机械加工,做成形状比较复杂的部件。然后再将加工好的部件在通氮气的炉子里进行最后氮化,使硅完全转变成氮化  相似文献   

9.
本文采用微波烧结工艺,将硅粉在氩气气氛下与氮气直接反应,合成了氮化硅粉,利用XRD手段对物相进行分析,并对硅粉氮化的过程进行了热力学及动力学上的计算,通过计算得出了硅粉直接氮化反应的活化能Ea及指前因子A,得出了硅粉微波烧结直接氮化反应为动力学控制反应的结论,解释了硅粉氮化反应只有在较高温度才能发生的原因。  相似文献   

10.
将T-60氧化铝粉、氮化硅粉和硅粉分别按50%、37.5%和12.5%的质量分数配料混合,经压制成型后,在空气中于1600℃保温2h烧成制得刚玉-氮化硅复合材料试样,借助于XRD、SEM、EDS等研究了加入硅粉对刚玉-氮化硅复合材料表面氧化膜组成和结构的影响。结果表明:在空气中烧成的刚玉-氮化硅复合材料表面氧化膜主要由富硅玻璃相、刚玉和莫来石组成;在刚玉-氮化硅复合材料中引入硅粉能减小氧化膜厚度,并能提高氧化膜的致密程度。  相似文献   

11.
高铝矾土-硅粉氮化合成SiAlON的过程研究   总被引:6,自引:2,他引:4  
侯新梅  钟香崇 《耐火材料》2005,39(5):333-336
分别以w(Al2O3)为68.08%和45.56%的两种高铝矾土及硅粉为原料,按合成SiAlON的理论配比配料(Si粉过量5%),成型后在流动N2(流量为0.06~0.1m3.h-1)中进行热重分析,同时测定试样在不同温度(900~1500℃)保温6h后的质量变化,并分析氮化后试样的物相变化,从而探讨该试样的氮化过程及其机理。结果表明,高铝矾土-硅粉试样在流动N2中的氮化反应过程可大致分为3个阶段:1)Si粉氮化阶段(900~1200℃),Si粉氮化生成Si3N4和Si2N2O;2)SiAlON形成阶段(1300~1400℃),生成O’-SiAlON和β-SiAlON;3)β-SiAlON的生长发育阶段(1450~1500℃),部分O’-SiAlON转化为β-SiAlON,Al2O3在β-SiAlON中的固溶度增加。  相似文献   

12.
低氮气压下燃烧合成氮化硅粉   总被引:3,自引:0,他引:3  
徐协文  钱端芬 《陶瓷工程》1999,33(4):4-8,28
对硅粉在低压氮气中的高温自蔓延合成(SHS)Si2N4粉末过程进行了探讨,实验证明了0.6MPa-0.7MPa的低氮气压下燃烧合成Si3N4的可行性,超始原料中加入适量的Si3N4粉作稀释剂,可促进Si粉向Si3N4的氮化墨迹。产物为1μm-2μm纯度较高的Si3N4粉,燃烧温度随氮气压力与孔率而变化,而随配料组成的变化不明显。  相似文献   

13.
氮化硅及其微粉的制备   总被引:2,自引:0,他引:2  
氮化硅陶瓷以其优异的性能被用来制作发动机元件、刀具、轴承等器件。本文主要介绍了氮化硅的性能、应用范围以及硅粉直接氮化法、SiO2还原氮化法、液相法、气相法等氮化硅微粉的制备方法。提出要批量生产Si3N4粉体,应从产品质量高、成本低和生产规模大等几个基本原则加以综合考虑。  相似文献   

14.
氮化硅陶瓷由于具有优良的机械性能、化学性能和物理性能而被广泛应用于化工、冶金及航天等领域.催化氮化法制备氮化硅可以有效避免“硅芯”及“流硅”等不完全氮化形为的发生;并促进氮化硅晶须的原位反应合成,改善氮化硅基材料界面的显微结构,提高最终制品的力学性能.本文综述了金属及金属氧化物催化剂催化氮化反应生成氮化硅的最新进展及一维氮化硅的原位生成机理,并在此基础上展望了催化氮化制备氮化硅工艺今后的发展方向.  相似文献   

15.
稀释剂含量对自蔓延高温合成Si3N4-SiC-TiN陶瓷的影响   总被引:5,自引:2,他引:3  
以TiSi2和SiC为原料,利用自蔓延高温合成(self-propagation high-temperature synthesis,SHS)方法合成直径为24mm的Si3N4-SiC-TiN陶瓷.通过理论计算和实验研究了不同孔隙率压坯中稀释剂SiC含量对反应物TiSi2转化率的影响.结果表明:SiC在一定范围内增加有利于TiSi2的氮化,且含40%(质量分数,下同)SiC和50%SiC的压坯在燃烧合成过程中发生了SiC的氮化反应.压坯孔隙率为50%(体积分数,下同)时,反应物TiSi2氮化充分,最终产物为Si3N4-SiC-TiN.孔隙率为45%,含量为30%SiC和40%SiC压坯的合成产物中残留游离Si,50%SiC压坯的合成产物中未发现游离Si.在稀释剂含量为35%SiC,氮气压力为150 MPa条件下,所得的Si3N4-SiC-TiN复相陶瓷抗弯强度达430 MPa,断裂韧性为3.6MPa·m1/2.  相似文献   

16.
尹少武  张朝  康鹏  韩嘉维  王立 《化工进展》2022,41(5):2256-2267
以单个硅颗粒氮化反应缩核模型为基础,本文建立了硅颗粒在输送床内反应、辐射与对流传热耦合的数学模型,并借助CFD软件FLUENT对输送床内能质传输过程进行了数值模拟,分析了输送床壁面温度、氮气流量、预热温度、硅粉粒径等因素对输送床内温度场和硅粉氮化率的影响。在数值计算域内将单个颗粒反应过程转化为颗粒群整体反应过程,实时监测颗粒粒径及未反应硅颗粒粒径,为数值模拟颗粒流反应提供一种新思路。当壁面温度高于1723K时,输送床内会出现一高温区加速硅粉氮化反应;反应温度越高、颗粒粒径越小,氮化过程越剧烈,硅粉到达完全氮化所需时间越短。模型表明为使粒径为2.5μm的硅粉达到完全氮化且输送床内最高温度不超过氮化硅的分解温度2173K,应控制输送床壁面温度在1773K,氮化时间在170s以上,预热温度在1273K,粉气质量比为0.2,稀释剂比例为0.5~1。  相似文献   

17.
郝斌 《硅酸盐通报》2015,34(3):864-867
以乙炔炭黑和硅粉为原料,采用微波烧结技术合成制备了粒度不同的碳化硅粉体.研究了反应温度和保温时间对碳化硅粉体产率和粒度的影响.结果表明:在900℃反应30 min,所得产物的主要物相为β-SiC和仍残余少量金属Si.随着反应温度的升高,产物中SiC的含量不断增加,残余金属Si的含量则明显下降.当反应温度升高至1100℃以上时,则得到单相的β-SiC.在1200℃下反应5min,产物中主要物相为SiC,存在着少量未反应的金属Si,当反应时间延长到15 min时,即得到单相的β-SiC.  相似文献   

18.
硅铁闪速燃烧合成氮化硅铁   总被引:3,自引:1,他引:3  
利用闪速燃烧合成新技术 ,以粒度≤ 0 .0 88mm的FeSi75硅铁细粉为原料 ,在 0 .2MPa的低氮气压力与 14 0 0℃的燃烧温度条件下 ,制备了细蜂窝状氮化硅铁。XRD和SEM分析结果表明 ,这种氮化硅铁主要由短柱状β Si3N4 相和Si3Fe相组成 ,其结构特征是以Si3Fe形成核心 ,并被Si3N4 包裹。同时 ,还用热力学原理探讨了由硅铁闪速燃烧合成氮化硅铁的工艺条件、形成产物的形式、反应的中间产物和残留金属的形态。热力学研究结论和实验检测结果相一致 ,从而在理论上阐明了闪速燃烧合成是制备氮化硅铁的一种理想工艺  相似文献   

19.
以锆英石细粉(≤0.045 mm)和活性炭为起始物料,N2为氮源,研究了配碳量(质量分数为10%、20%、22%和30%)、反应温度(1 3501、400、1 450和1 500℃)以及成型压力(25、501、00和150 MPa)等工艺参数对锆英石碳热还原氮化反应速率及产物相组成的影响。研究结果表明:1)配碳量不同,锆英石碳热还原氮化反应产物的相组成不同;此外,配碳量的增加还会降低锆英石碳热还原氮化反应的开始温度。2)反应温度对反应速率和产物相成分的影响显著;配碳量(w)为22%时,随着反应温度的升高,产物相中锆英石相和m-ZrO2含量减少,ZrN含量不断增加,而Zr7N8O4先增加后减少。3)成型压力对产物相组成的影响不大,但成型压力的增加会降低反应的速率。  相似文献   

20.
C-Si复合还原氮化合成矾土基β-SiAlON   总被引:1,自引:0,他引:1  
设计β-SiAlON的z值为3,以68%的生矾土(粒度≤0.074mm,烧后Al2O3含量约68%)、13%的硅粉(粒度≤0.021mm)和19%的炭黑(粒度≤5μm)为原料混合均匀后,装入坩埚中,在氮化炉中分别于1100℃、1200℃、1300℃、1350℃、1400℃、1450℃、1500℃和1550℃氮化处理6h后,测氮化后试样的质量变化率,并借助XRD、SEM及EDS等手段,同时研究了C-Si复合还原氮化合成矾土基β-SiAlON的反应过程。研究结果表明:(1)采用C-Si复合还原氮化的试样,在1100~1200℃时主要是Si与氮气和SiO2反应生成的Si2N2O;1300~1400℃时,C开始参与还原氮化反应,体系中开始有β-SiAlON生成;1450~1550℃时,β-SiAlON量逐渐增多,1500℃达到最大值。(2)与单一采用C、Si的试样相比,采用C-Si复合还原氮化的试样生成的β-SiAlON含量相对高,结晶形貌相对较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号