首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
双频段低噪声放大器的设计   总被引:1,自引:1,他引:0       下载免费PDF全文
适应多标准移动通信终端的迅速发展,设计了能够在800 MHz和1.8 GHz两个不同频段独立工作的低噪声放大器.放大器使用噪声性能优良的SiGeHBT管子,采用Cascode结构减小Miller电容的影响,发射极串联电感消除放大器输入端噪声系数和功率匹配的耦合,输入匹配电路采用单通道串并联LC电路,计算串并联电感和电容值,可以在两个工作频点发生谐振.输出端通过调整负载阻抗到50Ω,采用简单的电路实现功率输出.ADS的仿真结果表明,本文设计的低噪声放大器在800MHz和1.8 GHz两个工作频段的S21分别达到了24.3 dB和21.3 dB,S11均达到了-13 dB,S22均在-27dB以下,两个频段的噪声系数分别为3.3 dB和2.0 dB.  相似文献   

2.
徐鑫  张波  徐辉  王毅 《微波学报》2015,31(1):83-87
采用GaAs 0.13μmp HEMT MMIC流片工艺设计和制作了一种S频段双通道低噪声放大器芯片,芯片内部集成了两个低噪声放大器通道、一级单刀双掷(SPDT)开关和一个晶体管-晶体管逻辑(TTL)电平转换电路。低噪声放大器电路采用一级共源共栅场效应管(Cascode FET)结构实现,使其具有比单管更高的增益,简化了芯片拓扑,降低了芯片设计难度。经流片测试,在1.9~2.1GHz的工作频带内,芯片噪声系数优于1.4dB,增益大于22.5dB,输入驻波优于1.8,输出驻波优于1.4,输出1dB压缩点(P1dB)为10dBm。大量芯片样本在片测试统计数据表明该低噪声放大器成品率大于90%,性能指标优于目前同类商业芯片指标。  相似文献   

3.
庞东伟  陈涛  施雨  桑磊  陶小辉  曹锐 《微电子学》2018,48(2):173-177, 188
基于IBM8HP 120 nm SiGe BiCMOS工艺,分析了晶体管的最小噪声系数和最大可用增益特性。采用两级Cascode放大器级联结构,研制出一种频带为90~100 GHz的低噪声放大器(LNA)。详细分析了Cascode放大器潜在的自激可能性,采用串联小电阻的方式消除不稳定性。与电磁仿真软件Sonnet联合仿真,结果表明,在频带内,放大器的输入反射系数S11<-18 dB,输出反射系数S22<-12 dB;在94 GHz处,噪声系数为8 dB,增益为14.75 dB,输出1 dB压缩点功率为-7.9 dBm;在1.8 V供电电压下,整个电路的功耗为14.42 mW。该放大器具有低噪声、低功耗的特点。  相似文献   

4.
基于IHP 0.13 μm SiGe BiCMOS工艺,设计了一种工作于D波段的高增益低噪声放大器。该放大器由两级Cascode 结构和一级共发射极结构组成。利用发射极退化电感来同时实现噪声抑制和功率匹配,利用微带线进行输入输出匹配和级间匹配,采用增益提升技术来提高前两级Cascode结构的增益。仿真结果表明,该放大器在中心频率140 GHz处实现了32 dB的增益,在125~148 GHz范围内均达到30 dB以上的增益,在相同频率范围内实现了小于6 dB的噪声系数,直流功耗仅为26 mW,芯片尺寸为610 μm×340 μm。该放大器具有低噪声和高增益的特点。  相似文献   

5.
景一欧  李勇  赖宗声  孙玲  景为平   《电子器件》2007,30(4):1144-1147
采用0.18 μm CMOS工艺,实现了双频段低噪声放大器设计.通过射频选择开关,电路可以分别工作在无线局域网标准802.11g规定的2.4 GHz和802.11a规定的5.2 GHz频段.该低噪声放大器为共源共栅结构,设计中采用了噪声阻抗和输入阻抗同时匹配的噪声优化技术.电路仿真结果表明:在2.4 GHz频段电路线性增益为15.4 dB,噪声系数为2.3 dB,1 dB压缩点为-12.5 dBm,IIP3为-4.7 dBm;5.2 GHz频段线性增益为12.5 dB,噪声系数为2.9 dB,1 dB压缩点为-11.3 dBm,IIP3为-5.5 dBm.  相似文献   

6.
一种多模多频无线收发器前端SiGe BiCMOS低噪声放大器   总被引:1,自引:0,他引:1  
基于IBM 0.18μm SiGe BiCMOS工艺,提出了一种应用于2.4~2.5GHz 802.11b/g频段的低噪声放大器(LNA).电路采用全差分发射极电感负反馈共射共基(Cascode)结构,对称电感有效地降低了芯片面积,优化了电路性能.仿真结果表明:该电路在2.4 GHz到2.5 GHz频率范围内,增益(S21)达到25 dB,噪声系数(NF)小于1.5 dB,大幅度提高了收发机系统的性能.此外,输入和输出匹配(S11,S22)分别达到-15 dB,1 dB压缩点大于-25 dBm.电源电压为2.5 V时电路总电流为3 mA.  相似文献   

7.
提出了一种Cascode级间匹配电路,能够优化Cascode放大器的噪声系数、增益及高频稳定性。应用该电路,设计了一款多频段射频低噪声放大器(LNA)。采用0.25μm GaAs工艺进行实现,输入、输出阻抗匹配网络采用片外元件。测试结果表明,通过重配置片外元件的参数,该LNA可工作于0.7~1.1 GHz、1.6~2.1 GHz、2.3~2.8 GHz这三个频段,增益分别为25±2 dB、19.5±0.5 dB和18±1 dB,噪声系数分别低于0.6 dB、0.7 dB和0.9 dB,OIP3均大于30 dBm。该LNA对于GSM/WCDMA/LTE通信基站以及L/S频段接收机等设备具有一定的应用价值。  相似文献   

8.
基于0.25 μm GaAs赝高电子迁移晶体管(pHEMT)工艺,研制了一种1.0~2.4 GHz的放大衰减多功能芯片,该芯片具有低噪声、高线性度和增益可数控调节等特点。电路由第一级低噪声放大器、4位数控衰减器、第二级低噪声放大器依次级联构成,同时在片上集成了TTL驱动电路。为获得较大的增益和良好的线性度,两级低噪声放大器均采用共源共栅结构(Cascode)。测试结果表明,在1.0~2.4 GHz频带范围内,该芯片基态小信号增益约为36 dB,噪声系数小于1.8 dB,输出1 dB压缩点功率大于16 dBm,增益调节范围为15 dB,调节步进1 dB,衰减RMS误差小于0.3 dB,输入输出电压驻波比小于1.5。其中放大器采用单电源+5 V供电,静态电流小于110 mA,TTL驱动电路采用-5 V供电,静态功耗小于3 mA。整个芯片的尺寸为3.5 mm×1.5 mm×0.1 mm。  相似文献   

9.
基于IHP锗硅BiCMOS工艺,研究和实现了两种220 GHz低噪声放大器电路,并将其应用于220 GHz太赫兹无线高速通信收发机电路。一种是220 GHz四级单端共基极低噪声放大电路,每级电路采用了共基极(Common Base, CB)电路结构,利用传输线和金属-绝缘体-金属(Metal-Insulator-Metal, MIM)电容等无源电路元器件构成输入、输出和级间匹配网络。该低噪放电源的电压为1.8 V,功耗为25 mW,在220 GHz频点处实现了16 dB的增益,3 dB带宽达到了27 GHz。另一种是220 GHz四级共射共基差分低噪声放大电路,每级都采用共射共基的电路结构,放大器利用微带传输线和MIM电容构成每级的负载、Marchand-Balun、输入、输出和级间匹配网络等。该低噪放电源的电压为3 V,功耗为234 mW,在224 GHz频点实现了22 dB的增益,3 dB带宽超过6 GHz。这两个低噪声放大器可应用于220 GHz太赫兹无线高速通信收发机电路。  相似文献   

10.
低压中和化CMOS差分低噪声放大器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
宋睿丰  廖怀林  黄如  王阳元   《电子器件》2007,30(2):465-468
以设计低电压LNA电路为目的,提出了一种采用关态MOSFET中和共源放大器输入级栅漏寄生电容Cgd的CMOS差分低噪声放大器结构.基于该技术,采用0.35μmCMOS工艺设计了一种工作在5.8GHz的低噪声放大器.结果表明,在考虑了各种寄生效应的情况下,该低噪声放大器可以在0.75V的电源电压下工作,其功耗仅为2.45mW.在5.8GHz工作频率下:该放大器的噪声系数为2.9dB,正向增益S21为5.8dB,反向隔离度S12为-30dB,S11为-13.5dB.  相似文献   

11.
基于Jazz 0.35 μm SiGe工艺,设计了一款能够在1.8 GHz和2.4 GHz不同频段带独立工作的低噪声放大器.放大器使用噪声性能优良的SiGe HBT,采用Cascode结构减少米勒效应的影响.输入电路采用由两次连续的频率变换和电路转换得到的双频滤波电路,输出端用射随器实现50Ω阻抗匹配.结果表明,该低噪...  相似文献   

12.
本文介绍了一款基于0.15μm PHEMT工艺的Ka波段自偏压单片低噪声放大器(LNA)。该款低噪声放大器采用四级级联的电路结构,前两级采用源极电感负反馈同时获得较好的输入驻波和噪声;采用电阻自偏压技术,单电源供电,使用方便。该款低噪声放大器在26~40GHz频段内增益为22±1dB,噪声优于3dB;在36GHz处噪声优于2.5dB。芯片尺寸为2.0mm×1.0mm×0.1mm。  相似文献   

13.
低噪声放大器作为射频接收系统中的关键器件,其噪声系数与线性度影响整个系统的性能。本文基于0.25μm GaAs pHEMT工艺设计了一款应用于DC~3 GHz的低噪声放大器。放大器采用耗尽型晶体管构成自适应偏置电路提升低噪声放大器线性度,通过源极高Q值电感优化噪声系数。该低噪声放大器芯片的测试结果表明,与传统偏置结构的放大器相比,随着输入功率的增大,该电路具有良好的栅电压补偿功能,噪声系数比传统结构减小0.5 dB以上,相同工作电流下输出功率1 dB压缩点提高11 dB,相同射频输出功率下直流功耗减小40%以上。  相似文献   

14.
汪小军  黄风义  田昱  唐旭升  王勇   《电子器件》2009,32(3):579-582
提出了一个采用TSMC 0.18μmCMOS工艺设计的,工作频段为3.1~5.2 GHz的超宽带低噪声放大器.放大器采用了前置带通滤波器的并联负反馈共源共栅结构,并从宽带电路.高频电路器件选择等方面讨论了超宽带低噪声放大器的设计,结果表明,在整个工作频段,电路输入输出匹配S11S22均小于-14 dB,最高增益为15.92 dB,增益波动为1.13 dB,电路工作电压为1.8 V,功耗为27 mW,噪声系数NF为1.84~2.11 dB.  相似文献   

15.
一种5.7 GHz CMOS 全集成低噪声放大器的设计   总被引:1,自引:0,他引:1  
邓桂萍  王春华 《微电子学》2007,37(2):214-216,220
提出并设计了一种可以完全单片集成的5.7 GHz低噪声放大器(LNA)。该电路结构利用MOSFET自身的栅寄生电阻,通过简单的LC网络变换实现输入匹配;并采用跨阻结构,实现输出匹配。该电路采用TSMC 0.35μm CMOS工艺,用ADS模拟软件进行分析与优化。结果表明,设计的低噪声放大器,其增益为11.34 dB,噪声系数为2.2 dB,功耗12 mW,输入反射系数-33dB,线性度-4 dBm。  相似文献   

16.
康成斌  杜占坤  阎跃鹏 《半导体技术》2010,35(10):1003-1006
给出了一种采用Γ型输入匹配网络的源简并共源低噪声放大器电路结构,分析了在低功耗情况下,高频寄生效应对低噪声放大器(LNA)输入阻抗及噪声特性的影响,并采用此结构设计了一款工作于L渡段的低功耗低噪声放大器.采用CMOS 0.18μm工艺,设计了完整的ESD保护电路,并进行了QFN封装.测试结果表明.在1.57 GHz工作频率下,该低噪声放大器的输入回波损耗小于-30 dB,输出回波损耗小于-14 dB,增益为15.5 dB,噪声系数(NF)为2.4 dB,输入三阶交调点(IIP3)约为-8 dBm.当工作电压为1.5 V时,功耗仅为0.9 mW.  相似文献   

17.
设计一种用于物联网双频段的低功耗CMOS低噪声放大器(LNA).为了满足双频段和高增益,设计使用共源共栅(Cascode)结构并利用TSMC 0.18um工艺库进行仿真分析.仿真结果表明,在780MHz和433MHz中心频率下,电路的S11均小于-20dB和S21均大于20dB,并且具有好的稳定性.  相似文献   

18.
为了实现可变增益放大器高精度及大动态范围的优势,基于GaAs 0.25μm pHEMT工艺,设计了一款工作在0.1~4.0 GHz并行控制的可变增益放大器。放大器由数控衰减器和射频放大器组成。数控衰减单元采用桥T型结构和电平转换电路来实现;正压控制衰减电路简化了电路结构,提高电路可靠性;改进型并联电容补偿衰减结构改善大衰减态高频衰减精度;射频放大器电路采用并联电阻负反馈的共源共栅(Cascode)结构,实现了高增益平坦度和大动态范围。测试结果显示,在工作频带内,可变增益放大器的增益可达20 dB以上、平坦度在1.5 dB以内,可变增益范围为0~31.5 dB、衰减步进0.5 dB,输出三阶交调点最高可达39 dBm,端口回波损耗均小于-15 dB。  相似文献   

19.
本文从低噪声FET放大器的实际设计出发,分析了输入匹配电路对噪声性能的影响.从放大器的实际结构讨论了影响放大器噪声性能的因素.使用南京固体器件研究所研制的WC61GaAs MESFET,在3.7~4.2GHz下,得到的结果为:两级放大器增益28dB,三级放大器增益40dB,带内噪声温度小于80K,最小噪声温度为77K.  相似文献   

20.
提出并设计了一种应用于GPS接收机中的1.5 GHz低噪声放大器,该放大器采用TSMC 0.25μm RF CMOS工艺制作.与传统的共源共栅结构相比,该电路引入了级间耦合电容,使整个电路的功率增益、噪声系数等关键性能指标得到改善.该放大器的正向功率增益为21.8 dB,NF为0.96 dB,IIP3为-11 dBm,功耗为20 mW,且输入输出阻抗匹配良好,满足GPS接收机射频前端对低噪声放大器的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号