首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A chloromethylated styrene-divinylbenzene copolymer was post-cross-linked through Friedel-Crafts reaction to get a macroreticular resin adsorbent NA-01, and then chemically modified by dimethylamine to obtain an aminated adsorbent NA-01A. Batch adsorption runs of p-nitrophenol from aqueous solution onto adsorbent NA-01A were conducted to evaluate the effect of amino group on adsorption. The adsorption capacity of p-nitrophenol on NA-01A increased noticeably by comparison with the mother adsorbent. A linear relationship was observed between the adsorption capacity of NA-01A caused by amination and the equilibrium concentration of p-nitrophenol in aqueous solution, which can be reasonably elucidated by a modified isotherm equation based on the Freundlich model. The breakthrough curves on both adsorbents were experimentally determined and also predicted by the mathematic model based on the non-linear wave propagation theory and the corresponding isotherm model. The model based on the Freundlich model gave a good prediction of the breakthrough curve on NA-01, but a deviation occurred for NA-01A when C/C0 less than 0.3. However, another model based on the modified isotherm equation provided a better prediction for the breakthrough curves on NA-01A.  相似文献   

2.
The adsorption of aniline from aqueous solutions onto cobalt(II)-poly(vinyl chloride)-carboxylated diaminoethane (PVC-CDAE) resin has been studied using a mini-column apparatus at 25 ± 0.1 °C. First of all, experimental data obtained from the breakthrough curves were tested by using the Scatchard plot analysis, to have a preliminary prediction about the types of interaction of the resin with aniline. Our aim was to determine the model which best describes the experimental data. The aspect of the Scatchard plot indicated that the aniline adsorption did not follow the Langmuir model and the presence of two types of binding sites for aniline on the resin. However, the dynamics of aniline uptake were represented by the Freundlich model reasonably well. The kinetics of aniline adsorption from aqueous solution on the cobalt(II)-PVC-CDAE have also been tested using continuous column runs and rate-controlling step of the process was determined. In this study, homogeneous diffusion model was adapted to a column system to describe the change in the aniline concentration at the column exit beginning from breakthrough point as a function of time. Kinetic studies revealed that the rate-controlling step of the aniline adsorption was predominately film diffusion controlled rather particle diffusion.  相似文献   

3.
In this study, the ability of rice husk to adsorb methylene blue (MB) from aqueous solution was investigated in a fixed-bed column. The effects of important parameters, such as the value of initial pH, existed salt, the flow rate, the influent concentration of MB and bed depth, were studied. The Thomas model was applied to adsorption of MB at different flow rate, influent concentration and bed depth to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design using non-linear regression. The bed-depth/service time analysis (BDST) model was also applied at different bed depth to predict the breakthrough curves. The two models were found suitable for describing the biosorption process of the dynamic behavior of the rice husk column. All the results suggested that rice husk as adsorbent to removal MB from solution be efficient, and the rate of biosorption process be rapid. When the flow rate was 8.2ml min(-1) and the influent concentration of MB was 50mgl(-1), the equilibrium adsorption biomass reached 4.41mgg(-1) according to Thomas model.  相似文献   

4.
The ability of manganese oxide coated zeolite (MOCZ) to adsorb copper and lead ions in single- (non-competitive) and binary- (competitive) component sorption systems was studied in fixed-bed column. The experiments were applied to quantify particle size, bed length, influent flow rate and influent metal concentration on breakthrough time during the removal of copper and lead ions from aqueous solutions using MOCZ column. Results of fixed-bed adsorption showed that the breakthrough time appeared to increase with increase of the bed length and decrease of influent metal concentration, but decreased with increase of the flow rate. The Thomas model was applied to adsorption of copper and lead ions at bed length, MOCZ particle size, different flow rate and different initial concentration to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The model was found suitable for describing the adsorption process of the dynamic behavior of the MOCZ column. The total adsorbed quantities, equilibrium uptakes and total removal percents of Cu(II) and Pb(II) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different conditions. The results suggested that MOCZ could be used as an adsorbent for an efficient removal of copper and lead ions from aqueous solution. The removal of metal ion was decreased when other additional heavy metal ion was added, but the total saturation capacity of MOCZ for copper and lead ions was not significantly decreased. This competitive adsorption also showed that adsorption of lead ions was decreased insignificantly when copper ions was added to the influent, whereas a dramatic decrease was observed on the adsorption of copper ions by the presence of lead ions. The removal of copper and lead ion by MOCZ columns followed the descending order: Pb(II) > Cu(II). The adsorbed copper and lead ions were easily desorbed from MOCZ with 0.5 mol l(-1) HNO3 solution.  相似文献   

5.
In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin–Astakov (D–A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D–A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.  相似文献   

6.
Rice straw, an abundant, lignocellulosic agricultural residue worldwide, was thermochemically modified with citric acid to develop a biodegradable cationic adsorbent. The morphological and chemical characteristics of rice straw and acid-modified rice straw were investigated by scanning electron microscopy, surface area, and porosity analysis by the BET (Brunauer, Emmett, and Teller) nitrogen adsorption method and Fourier transform infrared spectroscopy. The modification process leads to the increase in the specific surface area and pore size of rice straw. In order to investigate the application potential of the prepared adsorbent to remove a cationic dye (Crystal violet) from its aqueous solution, a continuous adsorption study was carried out in a laboratory scale fixed-bed column packed with acid-modified rice straw. Effect of different flow rates and bed heights on the column breakthrough performance was investigated. Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. In order to determine the most suitable model for describing the adsorption kinetics of Crystal violet in the fixed-bed column system, the Bed Depth Service Time model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN) based model for determining the dye concentration in the column effluent was also developed. An extensive error analysis was carried out between experimental data and data predicted by the models using the following error functions: correlation coefficient (R 2), average relative error (ARE), sum of the absolute error (SAE), and χ2 statistic test. Based on the values of the error functions, the ANN model was most appropriate for describing the dynamic dye adsorption process.  相似文献   

7.
A column sorption-elution study was carried out by using a strong base anion-exchange resin (Dowex 2 x 8) for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of feed flow rate and the total and breakthrough capacity values of the resin were calculated. The boron on the resin was quantitatively eluted with 0.5M HCl solution at different flow rates. Three consecutive sorption-elution-washing-regeneration-washing cycles were applied to the resin in order to investigate the reusability of the ion-exchange resin. Total capacity values remained almost the same after three sorption-elution-regeneration cycles. The Thomas and the Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the characteristic column parameters required for process design. The results proved that the models would describe the breakthrough curves well.  相似文献   

8.
Adsorption characteristics of ammonium ion by zeolite 13X   总被引:2,自引:0,他引:2  
With synthetic wastewater, lab-scale batch experiments and column experiments were carried out to investigate the adsorption characteristics of ammonium ion by zeolite 13X which is a hydrothermally synthetic byproduct accompanied with preparation of potassium carbonate from insoluble potash ores. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms for ammonium ion uptake and the Langmuir model agrees very well with experimental data. Thermodynamic parameters including changes in the standard free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also calculated. The results show that the exchange process of ammonium ion by zeolite 13X is spontaneous and exothermic. The pseudo second-order kinetic model was found to provide excellent kinetic data fitting (R(2)>0.999). The effects of relevant dynamic parameters, such as influent flow rate, adsorbent bed height and initial ammonium ion concentration on the adsorption of ammonium ion were examined, respectively. The Thomas model was applied to predict the breakthrough curves and to determine the characteristic parameters of column useful for process design and was found suitable for describing the adsorption process of the dynamic behavior of the zeolite 13X column. The total adsorbed quantities, equilibrium uptakes and total removal percents of ammonium ion related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different conditions.  相似文献   

9.
The removal efficiency of waste tea from nickel containing aqueous solutions was investigated. All experiments were conducted fixed-bed columns. Experiments were carried out as a function of liquid flow rate (5-20 mL/min), initial Ni(II) concentration (50-200 mg/L), bed height (10-30 cm), pH of feed solution (2.0-5.0) and particle size (0.15-0.25 to 1.0-3.0 mm) of adsorbent. The total adsorbed quantities, equilibrium uptakes and total removal percents of Ni(II) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different flow rates, different inlet Ni(II) concentrations, different pH value, different bed height and different particle size for waste tea. The longest breakthrough time and maximum of Ni(II) adsorption is obtained at pH 4.0. Decrease in the particle size from 1.0-3.0 to 0.15-0.25 mm resulted in significant increase in the treated volume, breakthrough time and bed capacity. The results show that the column performed well at lowest flow rate. Also, column bed capacity and exhaustion time increased with increasing bed height. When the initial Ni(II) concentration is increased from 50 to 200 mg/L, the corresponding adsorption bed capacity appears to increase from 7.31 to 11.17 mg/g. The bed depth service time (BDST) model and the Thomas model were used to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.  相似文献   

10.
11.
朱友利  施永生  龙滔  王琳 《材料导报》2011,(Z1):448-450
研究了NaCl-MnO2改性沸石填料柱对水中Zn2+的动态吸附性能。探讨了填料厚度、Zn2+的初始质量浓度和流速对穿透曲线的影响。结果表明,NaCl-MnO2改性沸石能有效去除水中的Zn2,填料层增厚,穿透曲线上的穿透点向右移动,穿透时间延长;而流速、Zn2+的初始浓度增大,穿透曲线上的穿透点向左移动,穿透时间缩短;用Thomas模型描述Zn2+初始质量浓度为50mg/L、滤速为4mL/min时改性沸石对Zn2+的吸附动力学,相关系数为0.9994,平衡吸附容量为12.04mg/g。  相似文献   

12.
The adsorption of an acid dye from water onto pristine and HCl-activated montmorillonites in fixed beds was investigated. Experiments were carried out as a function of liquid flow rate, initial dye concentration, and bed height. The adsorption capacity of acid dye onto pristine clay could be largely improved when the clay was activated by HCl. A mass transfer model that involves only two parameters, tau (50% breakthrough time) and kappa (adsorption rate constant), was proposed. This model could satisfactorily describe the measured breakthrough curves of acid dye in fixed beds (standard deviation <6%). It was shown that the value of tau decreased with increasing liquid flow rate. The effect of the type of clay (pristine, acid-activated) on the values of kappa, tau, and adsorption capacity was discussed, and the application potential of acid-activated clay for adsorption removal of acid dye from water was also demonstrated.  相似文献   

13.
The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated. On the basis of the experimental results, it can be concluded that the adsorption of RY onto manganese oxides modified diatomite (MOMD) exhibited a characteristic "S" shape and can be simulated effectively by the Thomas model. It is shown that the adsorption capacity increased as the initial dye concentration increased. The increase in the dye uptake capacity with the increase of the adsorbent mass in the column was due to the increase in the surface area of adsorbent, which provided more binding sites for the adsorption. It is shown that the use of high flow rates reduced the time that RY in the solution is in contact with the MOMD, thus allowing less time for adsorption to occur, leading to an early breakthrough of RY. A rapid decrease in the column adsorption capacity with an increase in particle size with an average 56% reduction in capacity resulting from an increase in the particle size from 106-250 microm to 250-500 microm. The experimental data correlated well with calculated data using the Thomas equation and the bed depth-service time (BDST) equation. Therefore, it might be concluded that the Thomas equation and the BDST equations can produce accurate predication for variation of dye concentration, mass of the adsorbent, flow rate and particle size. In general, the values of adsorption isotherm capacity obtained in a batch system show the maximum values and are considerably higher than those obtained in a fixed-bed.  相似文献   

14.
In this article, the ability of chaff to adsorb heavy metal ions from aqueous solution was investigated in a fixed-bed column. The effect of important parameters, such as the value of pH, the flow rate, the influent concentration of solution and the effect of coexistence ions, was studied. Also the adsorption/desorption recycles of chaff were shown, and the results indicated that chaff could be recycled to remove heavy metal ions. The Thomas model was applied to adsorption of copper and lead at different flow rate and different influent concentration to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The model was found suitable for describing the biosorption process of the dynamic behavior of the chaff column. All the results suggested that chaff as adsorbent to removal heavy metal ions from solution prove efficient, and the rate of biosorption process is speedy. Furthermore, the efficiency of adsorption is high. When the flow rate was 3.6 ml min(-1) and the influent concentration of copper and lead was 14.82 mg l(-1) and 50.12 mg l(-1) respectively, the equilibrium adsorption biomass reached 1.98 mg g(-1) and 6.72 mg g(-1), respectively. The competitive adsorption for lead and copper was studied. Moreover the total adsorbing capability of chaff did not decrease when there were both copper(II) and lead(II) in solution.  相似文献   

15.
The adsorption of cobalt, chromium and nickel from aqueous solutions on IRN77 cation-exchange resin has been studied comparatively. The percentage removal of cobalt, chromium and nickel was examined by varying experimental conditions, viz. dosage of adsorbent, pH of the solution and contact time. It was found that more than 95% removal was achieved under optimal conditions. The adsorption capacity (k) for cobalt, chromium and nickel were calculated from the Freundlich adsorption isotherm. The adsorption of cobalt, chromium and nickel on this cation-exchange resin followed the Lagergren kinetic model. Also the competitive adsorption of multi-metals onto the IRN77 resin was studied. The studies showed that this cation-exchange resin can be used as an efficient adsorbent material for the removal of cobalt, chromium and nickel from water and nuclear power plant coolant water.  相似文献   

16.
The magnetic-chitosan particle was prepared and characterized by the SEM, XRD, FT-IR and employed as an adsorbent for removal fluoride from the water solution in the batch system. The Langmuir isotherms, Bradley's isotherm, Freundlich isotherm and Dubinin-Kaganer-Radushkevich (DKR) isotherm were used to describe adsorption equilibrium. The kinetic process was investigated using the pseudo-first-order model, pseudo-second-order model and intra-particle diffusion model, respectively. The results show that the magnetic-chitosan particle is amorphous of irregular clumps in the surface with groups of RNH(2), RNH(3), Fe-O, etc. Bradley's equation and two-sites Langmuir isotherms were fitted well with the adsorption equilibrium data; the maximal amount of adsorption of 20.96-23.98 mg/l and free energy of 2.48 kJ/mol were obtained from the Bradley's equation, two-sites Langmuir isotherm and DKR modeling, respectively. The pseudo-second-order with the initial adsorption rate 2.08 mg/g min was suitable to describe the kinetic process of fluoride adsorption onto the adsorbent. In overall, the major mechanism of fluoride adsorption onto the heterogeneous surface of magnetic-chitosan particle was proposed in the study.  相似文献   

17.
In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of HNO3 has been investigated. It has shown a regeneration efficiency of 52.0% with 0.5 M HNO3.  相似文献   

18.
The release of heavy metals from industrial wastewaters represents one of major threats to environment. Compared with chemical precipitation method, fixed-bed ion-exchange process can effectively remove heavy metals from wastewaters and generate no hazardous sludge. In order to design and operate fixed-bed ion-exchange processes successfully, it is very important to understand the column dynamics. In this study, the column experiments for Cu2+/H+, Zn2+/H+, and Cd2+/H+ systems using Amberlite IR-120 were performed to measure the breakthrough curves under varying operating conditions. The experimental results showed that total cation concentration in the mobile-phase played a key role on the breakthrough curves; a higher feed concentration resulted in an earlier breakthrough. Furthermore, the column dynamics was also predicted by self-sharpening and constant-pattern wave models. The self-sharpening wave model assuming local ion-exchange equilibrium could provide a simple and quick estimation for the breakthrough volume, but the predicted breakthrough curves did not match the experimental data very well. On the contrary, the constant-pattern wave model using a constant driving force model for finite ion-exchange rate provided a better fit to the experimental data. The obtained liquid-phase mass transfer coefficient was correlated to the flow velocity and other operating parameters; the breakthrough curves under varying operating conditions could thus be predicted by the constant-pattern wave model using the correlation.  相似文献   

19.
In this study, a sodium carbonate impregnated activated carbon (IAC) was applied as the adsorbent for low concentration hydrogen sulfide (H2S) in nitrogen under the anaerobic conditions in a fixed bed. The effects of impregnation, relative humidity, temperature, and the inlet H2S concentration on the adsorption process were intensively investigated. The data of adsorption capacity were correlated by Langmuir isotherm. The results showed that the data fitted the model well within the concentration range studied. The IAC demonstrated more than three times adsorption capacity for H2S under dry conditions, compared with the original activated carbon (AC). It was confirmed that increasing relative humidity enhanced H2S adsorption capacity on both AC and IAC, and the adsorption capacity of H2S decreased slightly with increasing temperature. To predict breakthrough curves, a one-dimension model for the fixed beds packed with porous adsorbents was proposed and numerically solved. Simulation results matched with the experimental data in most part of the breakthrough curves.  相似文献   

20.
In this research, ultrasonic-assisted fishtail palm Caryota urens seeds (UACUS) have been prepared for the effective removal of Zn(II) ions from aqueous solution in packed-bed column studies. The effect of various operating parameters such as bed depth, initial Zn(II) ions concentration and flow rate on breakthrough curves has been investigated. The dynamic response for the adsorption of Zn(II) ions onto UACUS was described in terms of the breakthrough curves. The results demonstrated that the maximum removal of Zn(II) ions was attained at a low flow rate, influent concentration and high bed depth. The results showed that breakthrough time and exhaustion time were increased with increase of bed height and decreased with increase of flow rate and initial Zn(II) ion concentration. The experimental column data were fitted with different mathematical models, namely Adams–Bohart, Yoon–Nelson and bed depth service time (BDST) models. Amongst the models, the BDST model agreed well with the experimental data. The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Environmental Scanning Electron Microscopy (ESEM), Energy Dispersive X-Ray Spectroscopy (EDX), and Thermogravimetric Analysis (TGA). The experimental results concluded that the prepared UACUS can be utilized as a potential and low-cost adsorbent for the removal of Zn(II) ions from the contaminated liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号