首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two ganciclovir (GCV)-resistant human cytomegalovirus (HCMV) strains recovered from an AIDS patient (strain VR4990) and a heart transplant recipient (strain VR5474) showed a Cys607-->Tyr change in the UL97-encoded phosphotransferase. No amino acid substitutions were observed in the viral DNA polymerase. Marker transfer experiments showed marked reduction in GCV phosphorylation and drug susceptibility of the recombinant HCMV strain VR4990rec2-1-1. These results further extend the region of the carboxy-terminal domain of the UL97 phosphotransferase involved in GCV substrate recognition.  相似文献   

2.
We isolated a ganciclovir (GCV)-resistant human cytomegalovirus (HCMV) from a laboratory strain, AD169, and analysed the mutant. Attempts were also made to identify directly the mutated gene. The 50% inhibitory concentration (IC50) of GCV for the mutant strain was five times higher than that of the wild-type strain. The mutant strain showed similar sensitivity to phosphonoacetic acid and cidofovir as the wild-type strain. These data suggest mutation in the UL97 gene encoding for the phosphotransferase that phosphorylates GCV. Molecular analysis of the mutant strain revealed that a single base substitution of adenine by cytosine occurred at the 1796 nucleotide position of the UL97 gene region, resulting in the substitution of lysine by threonine at codon 599 in the UL97 gene product. Marker transfer experiment confirmed that this mutation conferred HCMV resistance to GCV. The mutation at codon 599 was easily identified by means of RsaI digestion of the selected PCR product.  相似文献   

3.
The herpes simplex virus UL42 gene encodes a multifunctional polypeptide (UL42) that is essential for virus DNA replication. To further understand the relationship between the structure of UL42 and the role that it plays during virus replication, we analyzed an extensive set of mutant UL42 proteins for the ability to perform the three major biochemical functions ascribed to the protein:binding to DNA, stably associating with the virus DNA polymerase (Pol), and acting to increase the length of DNA chains synthesized by Pol. Selected mutants were also assayed for their ability to complement the replication of a UL42 null virus. The results indicated that the N-terminal 340 amino acids of UL42 were sufficient for all three biochemical activities and could also support virus replication. Progressive C-terminal truncation resulted in the loss of detectable DNA-binding activity before Pol binding, while several mutations near the N terminus of the polypeptide resulted in an altered interaction with DNA but had no apparent affect on Pol binding. More dramatically, an insertion mutation at residue 160 destroyed the ability to bind Pol but had no effect on DNA binding. This altered polypeptide also failed to increase the length of DNA product synthesized by Pol, and the mutant gene could not complement the growth of a UL42 null virus, indicating that the specific interaction between Pol and UL42 is necessary for full Pol function and for virus replication. This study confirms the validity of the Pol-UL42 interaction as a target for the design of novel therapeutic agents.  相似文献   

4.
Cidofovir (CDV) (HPMPC) has potent in vitro and in vivo activity against human cytomegalovirus (HCMV), CDV diphosphate (CDVpp), the putative antiviral metabolite of CDV, is an inhibitor and an alternate substrate of HCMV DNA polymerase. CDV is incorporated with the correct complementation to dGMP in the template, and the incorporated CDV at the primer end is not excised by the 3'-to-5' exonuclease activity of HCMV DNA polymerase. The incorporation of a CDV molecule causes a decrease in the rate of DNA elongation for the addition of the second natural nucleotide from the singly incorporated CDV molecule. The reduction in the rate of DNA (36-mer) synthesis from an 18-mer by one incorporated CDV is 31% that of the control. However, the fidelity of HCMV DNA polymerase is maintained for the addition of the nucleotides following a single incorporated CDV molecule. The rate of DNA synthesis by HCMV DNA polymerase is drastically decreased after the incorporation of two consecutive CDV molecules; the incorporation of a third consecutive CDV molecule is not detectable. Incorporation of two CDV molecules separated by either one or two deoxynucleoside monophosphates (dAMP, dGMP, or dTMP) also drastically decreases the rate of DNA chain elongation by HCMV DNA polymerase. The rate of DNA synthesis decreases by 90% when a template which contains one internally incorporated CDV molecule is used. The inhibition by CDVpp of DNA synthesis by HCMV DNA polymerase and the inability of HCMV DNA polymerase to excise incorporated CDV from DNA may account for the potent and long-lasting anti-CMV activity of CDV.  相似文献   

5.
2,5,6-Trichloro-1-beta-D-ribofuranosyl benzimidazole (TCRB) is a potent and selective inhibitor of human cytomegalovirus (HCMV) replication. TCRB acts via a novel mechanism involving inhibition of viral DNA processing and packaging. Resistance to the 2-bromo analog (BDCRB) has been mapped to the UL89 open reading frame (ORF), and this gene product was proposed as the viral target of the benzimidazole nucleosides. In this study, we report the independent isolation of virus that is 20- to 30-fold resistant to TCRB (isolate C4) and the characterization of the virus. The six ORFs known to be essential for viral DNA cleavage and packaging (UL51, UL52, UL56, UL77, UL89, and UL104) were sequenced from wild-type HCMV, strain Towne, and from isolate C4. Mutations were identified in UL89 (D344E) and in UL56 (Q204R). The mutation in UL89 was identical to that previously reported for virus resistant to BDCRB, but the mutation in UL56 is novel. Marker transfer analysis demonstrated that each of these mutations individually caused approximately 10-fold resistance to the benzimidazoles and that the combination of both mutations caused approximately 30-fold resistance. The rate and extent of replication of the mutants was the same as for wild-type virus, but the viruses were less sensitive to inhibition of DNA cleavage by TCRB. Mapping of resistance to UL56 supports and extends recent work showing that UL56 codes for a packaging motif binding protein which also has specific nuclease activity (E. Bogner et al., J. Virol. 72:2259-2264, 1998). Resistance which maps to two different genes suggests that their putative proteins interact and/or that either or both have a benzimidazole ribonucleoside binding site. The results also suggest that the gene products of UL89 and UL56 may be antiviral drug targets.  相似文献   

6.
Studies were initiated to determine whether rhesus cytomegalovirus (RhCMV)-infected macaques could serve as an animal model for evaluating anti-CMV compounds, as macaques have a naturally occurring CMV that is similar to human CMV (HCMV). Utilizing plaque reduction assays, RhCMV was tested to anti-viral susceptibility. By these assays. RhCMV displayed anti-viral susceptibility to ganciclovir at a 50% effective dose (ED50) of 0.8 microM, acyclovir at an ED50 of 15 microM, and foscarnet at an ED50 of 250 microM. By Southern blot analysis with HCMV-UL97 (phosphotransferase) and DNA polymerase (pol) genes as probes, we isolated viral DNA fragments that strongly hybridized. DNA sequence analysis of these DNA fragments revealed two open reading frames with homology to HCMV UL97 and DNA polymerase. Steady-state RNA analysis revealed that the RhCMV UL97 homologue and pol genes are transcribed as early late and early genes, respectively. Comparison against HCMV showed the RhCMV UL97 homologue exhibits 54.4% amino acid (aa) sequence identity to HCMV UL97 and the RhCMV DNA polymerase 59.2% aa sequence identity to HCMV DNA polymerase. Results from anti-viral assays and molecular characterization of these two viral genes suggest that RhCMV-infected rhesus macaques should serve as an excellent animal model for evaluating future anti-CMV compounds.  相似文献   

7.
The herpes simplex virus type 1 (HSV-1) UL12 gene encodes an alkaline pH-dependent deoxyribonuclease termed alkaline nuclease. A recombinant UL12 knockout mutant, AN-1, is severely compromised for growth, and analysis of this mutant suggests that UL12 plays a role in processing complex DNA replication intermediates (R. Martinez, R. T. Sarisky, P. C. Weber, and S. K. Weller, (1996) J. Virol. 70, 2075-2085). This processing step may be required for the generation of capsids that are competent for egress from the nucleus to the cytoplasm. In this report, we address the question of whether the AN-1 growth phenotype is due to the loss of UL12 catalytic activity. We constructed two point mutations in a highly conserved region (motif II) of UL12 and purified wild-type and mutant enzymes from a baculovirus expression system. Both mutant proteins are stable, soluble, and competent for correct nuclear localization, suggesting that they have retained an intact global conformation. Neither mutant protein, however, exhibits exonuclease activity. In order to examine the in vivo effects of these mutations, we determined whether expression of mutant proteins from amplicon plasmids could complement AN-1. While the wild-type plasmid complements the growth of the null mutant, neither UL12 mutant can do so. Loss of exonuclease activity therefore correlates with loss of in vivo function.  相似文献   

8.
The cellular localization and virion association of the human cytomegalovirus (HCMV) UL97 protein were studied. UL97 protein demonstrated early nuclear localization followed by late perinuclear accumulation. It was found to be a structural virion constituent detected in all three enveloped forms of extracellular viral particles and shown to be phosphorylated by the virion-associated protein kinase. UL97 protein immunoprecipitated from virions and from infected cells demonstrated protein kinase activity manifested by autophosphorylation. This activity was reduced in the presence of a ganciclovir-resistance mutation at residue 460, implicated in nucleotide binding. A mutant virus, from which the proposed UL97 kinase catalytic domain had been deleted, could not be propagated in the absence of a helper wild-type virus. The characterization of UL97 protein as a virion-associated protein kinase which appears essential for viral replication, provides further insight into HCMV replication and could identify a potential novel target for antiviral therapy.  相似文献   

9.
The expression of the human cytomegalovirus (HCMV) UL97 open reading frame in infected or transfected cells in the presence of the antiherpes compound ganciclovir (GCV) results in the intracellular phosphorylation of GCV. There are conventional kinase domains within the UL97-encoded protein (pUL97). However, the role of pUL97 in the HCMV replication cycle, and the mechanism by which it causes phosphorylation of GCV, are currently unknown. Herein, the biosynthesis and biogenesis of pUL97 was studied in HCMV-infected cells. pUL97 is expressed with early-late kinetics and is posttranslationally modified by phosphorylation. This phosphorylation occurs within 1 hr after synthesis, affects the electrophoretic mobility of pUL97, and is independent of the presence of other HCMV proteins. pUL97 was localized to the nucleus of infected cells and found in the HCMV virions. Thus, pUL97 is a virion phosphoprotein, and a likely tegument component.  相似文献   

10.
11.
The UL52 gene product of herpes simplex virus type 1 (HSV-1) comprises one subunit of a 3-protein helicase-primase complex that is essential for replication of viral DNA. The functions of the individual subunits of the complex are not known with certainty, although it is clear that the UL8 subunit is not required for either helicase or primase activity. Examination of the predicted amino acid sequence of the UL5 gene reveals the existence of conserved helicase motifs; it seems likely, therefore, that UL5 is responsible for the helicase activity of the complex. We have undertaken mutational analysis of UL52 in an attempt to understand the functional contribution of this protein to the helicase-primase complex. Amino acid substitution mutations were introduced into five regions of the UL52 gene that are highly conserved among HSV-1 and the related herpesviruses equine herpesvirus 1, human cytomegalovirus, Epstein-Barr virus, and varicella-zoster virus. Of seven mutants analyzed by an in vivo replication assay, three mutants, in three different conserved regions of the protein, failed to support DNA replication. Within one of the conserved regions is a 6-amino-acid motif (IL)(VIM)(LF)DhD (where h is a hydrophobic residue), which is also conserved in mouse, yeast, and T7 primases. Mutagenesis of the first aspartate residue of the motif, located at position 628 of the UL52 protein, abolished the ability of the complex to support replication of an origin-containing plasmid in vivo and to synthesize oligoribonucleotide primers in vitro. The ATPase and helicase activities were unaffected, as was the ability of the mutant enzyme to support displacement synthesis on a preformed fork substrate. These results provide experimental support for the idea that UL52 is responsible for the primase activity of the HSV helicase-primase complex.  相似文献   

12.
Cidofovir (CDF) or Vistid is a monophosphate nucleoside analogue that inhibits the DNA polymerase of herpes viruses including the cytomegalovirus (CMV). CDF is active on GCV-resistant strains with a mutation on the phosphotransferase gene (UL97). However, DNA polymerase gene mutations that induce resistance to GCV are responsible for cross-resistance to CDF. Resistance phenotypes to GCV and CDF were determined for 57 CMV strains isolated from blood and urine samples. Sixteen strains were recovered after CDF therapy. Of the remaining 41 CDF-naive strains, 34 were susceptible and seven resistant to GCV. Fifty percent inhibitory concentrations (IC50) for CDF were in the 0.2-2.6 microM range for CDF-naive strains susceptible to GCV. For GCV-resistant strains, IC50 values for CDF were < or = 3 microM for strains with a low level of resistance to GCV (GCV IC50 < 30 microM) and > or = 6 microM for three of the five strains with a high level of resistance to GCV (GCV IC50 > or = 30 microM).  相似文献   

13.
The human cytomegalovirus (HCMV) DNA polymerase gene (UL54; also called pol) is a prototypical early gene in that expression is mandatory for viral DNA replication. Recently, we have identified the major regulatory element in the UL54 promoter responsive to the major immediate early (MIE) proteins (UL122 and UL123) (J.A. Kerry, M.A. Priddy, and R. M. Stenberg, J. Virol. 68:4167-4176, 1994). Mutation of this element, inverted repeat sequence 1 (IR1), abrogates binding of cellular proteins to the UL54 promoter and reduces promoter activity in response to viral proteins in transient-transfection assays. To extend our studies on the UL54 promoter, we aimed to examine the role of IR1 in UL54 regulation throughout the course of infection. These studies show that viral proteins in addition to the MIE proteins can activate the UL54 promoter. Proteins from UL112-113 and IRS1/TRS1, recently identified as essential loci for transient complementation of HCMV oriLyt-dependent DNA replication, were found to function as transactivators of the UL54 promoter in association with MIE proteins. UL112-113 enhanced UL54 promoter activation by MIE proteins three- to fourfold. Constitutive expression of UL112-113 demonstrated that the MIE protein dependence of UL112-113 transactivational activity was not related to activation of cognate promoter sequences, suggesting that UL112-113 proteins function in cooperation with the MIE proteins. Mutation of IR1 was found to abrogate stimulation of the UL54 promoter by UL112-113, suggesting that this element is also involved in UL112-113 stimulatory activity. These results demonstrate that additional viral proteins influence UL54 promoter expression in transient-transfection assays via the IR1 element. To confirm the biological relevance of IR1 in regulating UL54 promoter activity during viral infection, a recombinant virus construct containing the UL54 promoter with a mutated IR1 element regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene (RVIRmCAT) was generated. Analysis of RVIRmCAT revealed that mutation of IR1 dramatically reduces UL54 promoter activity at early times after infection. However, at late times after infection CAT expression by RVIRmCAT, as assessed by RNA and protein levels, was approximately equivalent to expression by wild-type RVpolCAT. These data demonstrate IR1-independent regulation of the UL54 promoter at late times after infection. Together these results show that multiple regulatory events affect UL54 promoter expression during the course of infection.  相似文献   

14.
The herpes simplex virus type 1 (HSV-1) helicase-primase, an essential component of the viral DNA replication machinery, is a trimeric complex of the virus-coded UL5, UL8, and UL52 proteins. An assembly of the UL5 and UL52 subunits retains both enzymic activities, and the UL8 protein has been implicated in modulating these functions, facilitating efficient nuclear uptake of the complex and interacting with other viral DNA replication proteins. To further our understanding of UL8, we have constructed plasmids expressing mutant proteins, truncated at their N- or C-termini or lacking amino acids internally, under the control of the human cytomegalovirus major immediate-early promoter. Deletion of 23 amino acids from the N-terminus or 33 from the C-terminus abolished the ability of UL8 to support DNA replication in transient transfection assays. None of the UL8 mutants tested exhibited a strong dominant negative phenotype in the presence of the wild-type product, although some inhibition of replication was observed with mutants lacking 165 N-terminal or 497 C-terminal amino acids. The ability of the UL8 mutants to facilitate efficient nuclear localization of UL52 in the presence of coexpressed UL5 was examined by immunofluorescence. Selected mutants were also expressed by recombinant baculoviruses and tested for interaction with UL5 and UL52 in immunoprecipitation assays. The replicative ability of the mutants was found to correlate with their ability to localize UL52 to the nucleus, but not their interaction with UL5 and UL52. This property precluded the identification of any region of UL8 important for its presumed nuclear functions.  相似文献   

15.
Passage of human immunodeficiency virus type-1 (HIV-1) in T-lymphocyte cell lines in the presence of increasing concentrations of the hydroxylethylamino sulfonamide inhibitor VX-478 or VB-11328 results in sequential accumulation of mutations in HIV-1 protease. We have characterized recombinant HIV-1 proteases that contain these mutations either individually (L10F, M46I, I47V, I50V) or in combination (the double mutant L10F/I50V and the triple mutant M46I/I47V/I50V). The catalytic properties and affinities for sulfonamide inhibitors and other classes of inhibitors were determined. For the I50V mutant, the efficiency (kcat/Km) of processing peptides designed to mimic cleavage junctions in the HIV-1 gag-pol polypeptide was decreased up to 25-fold. The triple mutant had a 2-fold higher processing efficiency than the I50V single mutant for peptide substrates with Phe/Pro and Tyr/Pro cleavage sites, suggesting that the M46I and I47V mutations are compensatory. The effects of mutation on processing efficiency were used in conjunction with the inhibition constant (Ki) to evaluate the advantage of the mutation for viral replication in the presence of drug. These analyses support the virological observation that the addition of M46I and I47V mutations on the I50V mutant background enables increased survival of the HIV-1 virus as it replicates in the presence of VX-478. Crystal structures and molecular models of the active site of the HIV-1 protease mutants suggest that changes in the active site can selectively affect the binding energy of inhibitors with little corresponding change in substrate binding.  相似文献   

16.
17.
18.
19.
One hope to maintain the benefits of antiviral therapy against the human immunodeficiency virus type 1 (HIV-1), despite the development of resistance, is the possibility that resistant variants will show decreased viral fitness. To study this possibility, HIV-1 variants showing high-level resistance (up to 1,500-fold) to the substrate analog protease inhibitors BILA 1906 BS and BILA 2185 BS have been characterized. Active-site mutations V32I and I84V/A were consistently observed in the protease of highly resistant viruses, along with up to six other mutations. In vitro studies with recombinant mutant proteases demonstrated that these mutations resulted in up to 10(4)-fold increases in the Ki values toward BILA 1906 BS and BILA 2185 BS and a concomitant 2,200-fold decrease in catalytic efficiency of the enzymes toward a synthetic substrate. When introduced into viral molecular clones, the protease mutations impaired polyprotein processing, consistent with a decrease in enzyme activity in virions. Despite these observations, however, most mutations had little effect on viral replication except when the active-site mutations V32I and I84V/A were coexpressed in the protease. The latter combinations not only conferred a significant growth reduction of viral clones on peripheral blood mononuclear cells but also caused the complete disappearance of mutated clones when cocultured with wild-type virus on T-cell lines. Furthermore, the double nucleotide mutation I84A rapidly reverted to I84V upon drug removal, confirming its impact on viral fitness. Therefore, high-level resistance to protease inhibitors can be associated with impaired viral fitness, suggesting that antiviral therapies with such inhibitors may maintain some clinical benefits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号