首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Females of the obligately parasitic cuckoo ant,Leptothorax kutteri, a workerless inquiline, are among the only adult ants that can successfully invade ant societies and come to be accepted as a nestmate by the existing adult workers. This occurs even though the cuckoo ant is usually severely attacked by theLeptothorax acervorum workers of the colony that she is attempting to enter and parasitize. Through extensive ethogram studies of established parasites and parasitized and free-livingL. acervorum workers and queens, we show that theL. kutteri queen grooms host queens at an exceptionally high frequency. Possibly associated with this behavior, the established parasite is never attacked by theL. acervorum workers or queens she exploits. We show that there is exceptional similarity between the cuticular hydrocarbons and especially the cuticular fatty acids of the parasitic females and her nestmateL. acervorum workers, compared with nonnestmate workers and queens. We suggest that this matching of cuticular compounds may be associated with the grooming of host queens by the parasite. This in turn suggests the possibility that fatty acids have a role in colony-specific nestmate recognition in these and other ants and that grooming may serve for the dissemination of such substances throughout the colony.  相似文献   

2.
Territorial boundaries between conspecific social insect colonies are maintained through a highly developed nestmate recognition system modulated by heritable and, in some instances, nonheritable cues. Argentine ants, Linepithema humile, use both genetic and environmentally derived cues to discriminate nestmates from nonnestmates. We explored the possibility that intraspecific aggression in the Argentine ant might diminish when colonies shared a common diet. After segregating recently field-collected colony pairs into high or moderate aggression categories, we examined the effect of one of three diets: two hydrocarbon-rich insect prey, Blattella germanica and Supella longipalpa, and an artificial (insect-free) diet, on the magnitude of aggression loss. Aggression diminished between colony pairs that were initially moderately aggressive. However, initially highly aggressive colony pairs maintained high levels of injurious aggression throughout the study, independent of diet type. Each diet altered the cuticular hydrocarbon profile by contributing unique, diet-specific cues. We suggest that acquisition of common exogenous nestmate recognition cues from shared food sources may diminish aggression and promote fusion in neighboring colonies of the Argentine ant.  相似文献   

3.
Colonies of the harvester ant, Pogonomyrmex barbatus, perform a variety of tasks. The behavior of an individual worker appears to depend on its recent history of brief contacts with ants of the same and other task groups. The purpose of this study was to determine whether task groups differ in cuticular hydrocarbon composition. We compared the cuticular hydrocarbon composition of ants collected under natural conditions as they performed one of three tasks: patrolling (locating food sources), foraging, or nest maintenance. Task groups differed significantly in the relative proportions of classes of hydrocarbon compounds, as well as in individual compounds. Relative to nest maintenance workers, foragers and patrollers had a higher proportion of straight-chain alkanes relative to monomethylalkanes, dimethylalkanes, and alkenes. There was no significant difference in the chain length of n-alkanes among the task groups. Foragers did not differ in hydrocarbon composition from patrollers. Colonies differed significantly from one another in hydrocarbon composition, but task groups differed in consistent ways from colony to colony, suggesting that the mechanism responsible for task-related hydrocarbon composition was the same in all colonies. P. barbatus workers switch tasks during their lifetimes, suggesting that cuticular hydrocarbon composition changes during adulthood as well. Nest maintenance workers are probably younger than foragers and patrollers and perform very little of their work outside of the nest. Task-related hydrocarbon differences detected here may be associated with worker age, and/or the abiotic characteristics (temperature, humidity, and ultraviolet light) of the interior and exterior work environments.  相似文献   

4.
Within a colony of harvester ants (Pogonomyrmex barbatus), workers in different task groups differ in the hydrocarbon composition of the cuticle. Foragers and patrollers, which spend extended periods of time outside the nest, have a higher proportion of saturated, unbranched hydrocarbons (n-alkanes) on the cuticle than nest maintenance workers, which spend only short periods of time outside the nest. We tested whether these task-related differences in ant cuticular chemistry arise from exposure to conditions outside the nest. Nest maintenance workers experiencing daily, short-term outside exposure developed a higher proportion of n-alkanes on the cuticle than workers kept inside the lab. Independent manipulations of ultraviolet radiation, relative humidity, and temperature revealed that only the combination of high temperature (ca. 38°C) and low relative humidity (ca. 8%) increased the proportion of cuticular n-alkanes. The results indicate that warm dry conditions, such as those encountered when an ant leaves the nest, trigger changes in cuticular chemistry.  相似文献   

5.
Heritable cuticular hydrocarbon patterns ofSolenopsis invicta workers are consistent within colonies for a given sampling time but vary sufficiently from colony to colony to distinguish the colonies from each other. In addition, cuticular hydrocarbon patterns change within colonies over time. Nestmate recognition cues found on the individual's cuticle, can be from heritable or environmental sources, and are a subset of colony odor. The cuticular hydrocarbons can be used as a model for heritable nestmate recognition cues. We propose that because potential nestmate recognition cues, both environmental and genetic, are dynamic in nature rather than static, during its lifetime a worker must continually update its perception (template) of colony odor and nestmate recognition cues.  相似文献   

6.
Social insects have developed sophisticated recognition skills to defend their nests against intruders. They do this by aggressively discriminating against non-nestmates with deviant cuticular hydrocarbon (CHC) signatures. Studying nestmate recognition can be challenging as individual insects do not only vary in their discriminatory abilities, but also in their motivation to behave aggressively. To disentangle the influence of signaling and behavioral motivation on nestmate recognition, we investigated the ant Temnothorax nylanderi, where the presence of tapeworm-infected nestmates leads to reduced nestmate recognition among uninfected workers. The parasite-induced decline in nestmate recognition could be caused by higher intra-colonial cue diversity as tapeworm-infected workers are known to exhibit a modified hydrocarbon signature. This in turn may broaden the neuronal template of their nestmates, leading to a higher tolerance towards alien conspecifics. To test this hypothesis, we exchanged infected ants between colonies and analyzed their impact on CHC profiles of uninfected workers. We demonstrate that despite frequent grooming, which should promote the transfer of recognition cues, CHC profiles of uninfected workers neither changed in the presence of tapeworm-infected ants, nor did it increase cue diversity among uninfected nestmates within or between colonies. However, CHC profiles were systematically affected by the removal of nestmates and addition of non-nestmates, independently from the ants’ infection status. For example, when non-nestmates were present workers expressed more dimethyl alkanes and higher overall CHC quantities, possibly to achieve a better distinction from non-nestmates. Workers showed clear task-specific profiles with tapeworm-infected workers resembling more closely young nurses than older foragers. Our results show that the parasite-induced decline in nestmate recognition is not due to increased recognition cue diversity or altered CHC profiles of uninfected workers, but behavioral changes might explain tolerance towards intruders.  相似文献   

7.
The salticid spider Cosmophasis bitaeniata preys on the larvae of the green tree ant Oecophylla smaragdina. Gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS) reveal that the cuticle of C. bitaeniata mimics the mono- and dimethylalkanes of the cuticle of its prey. Recognition bioassays with extracts of the cuticular hydrocarbons of ants and spiders revealed that foraging major workers did not respond aggressively to the extracts of the spiders or conspecific nestmates, but reacted aggressively to conspecific nonnestmates. Typically, the ants either failed to react (as with control treatments with no extracts) or they reacted nonaggressively as with conspecific nestmates. These data indicate that the qualitative chemical mimicry of ants by C. bitaeniata allows the spiders to avoid detection by major workers of O. smaragdina.  相似文献   

8.
The cuticular hydrocarbons of the ant Formica argentea were identified by gas chromatography/mass spectrometry. Behavioral bioassays tested the role of each class of cuticular hydrocarbon in nestmate recognition, and statistical analyses looked for potential colony-specific signatures. The cuticular hydrocarbons of F. argentea consist of n-alkanes, alkenes, and methyl-branched alkanes. Behavioral bioassays demonstrated that changes in the alkene and methyl-branched alkane signature of F. argentea increased aggression, but changes in alkanes did not. Statistical analyses demonstrated that F. argentea workers present a colony-specific hydrocarbon profile based on their methyl-branched C29 alkane signature. Using this signature alone, it is possible to group worker ants statistically by nest, suggesting that methyl-branched C29 alkanes may be important in nestmate recognition for this species. These results support the idea that variation in positional isomers of cuticular hydrocarbons of the same carbon chain length may provide enough information for nestmate recognition. Although the addition of alkenes increased aggression in F. argentea, alkenes did not provide a colony-specific signature. This study reinforces the idea that investigators studying nestmate recognition should not examine cuticular hydrocarbon profiles as a whole but rather, should look for colony-specific signatures embedded in parts of the profile.  相似文献   

9.
Colony-specific cuticular hydrocarbons are used by social insects in nestmate recognition. Here, we showed that hydrocarbons found on the mound of Pogonomyrmex barbatus nests facilitate the return of foragers to the nest. Colony-specific hydrocarbons, which ants use to distinguish nestmates from non-nestmates, are found on the midden pebbles placed on the nest mound. Midden hydrocarbons occur in a concentration gradient, growing stronger near the nest entrance, which is in the center of a 1–2 m diameter nest mound. Foraging behavior was disrupted when the gradient of hydrocarbons was altered experimentally. When midden material was diluted with artificial pebbles lacking the colony-specific hydrocarbons, the speed of returning foragers decreased significantly. The chemical environment of the nest mound contributes to the regulation of foraging behavior in harvester ants.  相似文献   

10.
Laboratory-rearedSolenopsis invicta workers were tested for the ability to discriminate nestmates from nonnestmate conspecifics. Postcontact aggressive response to workers from local field colonies was significantly greater than the response to lab-reared workers, even when the latter were selected from colonies originating hundreds of miles away. Behavioral observations support the conclusion that lab-reared ants were less distinctive than field-collected ants with respect to recognition cues detectable on the cuticle. Potential environmental factors affecting colony odor are discussed. In addition, gas-liquid Chromatographic and statistical analyses of the majorS. invicta cuticular hydrocarbons indicate that cuticular hydrocarbon pattern was a poor predictor of laboratory colony response to field colony workers.  相似文献   

11.
Nestmate recognition plays a key role in kin selection to maintain colony integrity in social insects. Previous studies have demonstrated that nestmate recognition is dependent on detection of cuticular hydrocarbons. However, the absence of intraspecific aggression between some colonies of Isoptera and social Hymenoptera questions whether kin recognition must occur in social insects. The purpose of this study was to determine if cuticular hydrocarbon similarity and high genetic relatedness could explain the lack of intraspecific aggression among and within colonies of the introduced subterranean termite Reticulitermes santonensis. We performed both GC analysis of cuticular hydrocarbons and genotyping by using 10 DNA microsatellite loci on the same 10 workers from each of 14 parisian colonies. Multivariate analyses demonstrated correspondence between cuticular hydrocarbon patterns and genetic variation. By using a redundancy analysis combining chemical and genetic data, we found that a few hydrocarbons (mainly short vs. long chains; saturated vs. unsaturated alkanes) were associated with most genetic variation. We also found a strong positive correlation between chemical and genetic distances between colonies, thus providing evidence of a genetic basis for cuticular hydrocarbon variation. However, genetic distance did not account for all chemical variation, thus suggesting that some hydrocarbon variation was environmentally derived. Investigation at the intracolony level indicated that cuticular hydrocarbons did not depend on colony social structure. Based on our findings, we speculate that the absence of intraspecific aggression in R. santonensis may result from a loss of diversity in genetically derived recognition compounds in this species that presumably descended from R. flavipes populations imported from North America.  相似文献   

12.
Myrmecophiles are animals that live in close association with ants and that frequently develop elaborate mechanisms to infiltrate their well-defended host societies. We compare the social integration strategies of two myrmecophilic species, the spider, Gamasomorpha maschwitzi, and the newly described silverfish, Malayatelura ponerophila gen. n. sp. n., into colonies of the ponerine army ant, Leptogenys distinguenda (Emery) (Hymenoptera: Formicidae). Both symbionts use chemical mimicry through adoption of host cuticular hydrocarbons. Exchange experiments between L. distinguenda and an undetermined Leptogenys species demonstrate that reduced aggression toward alien ants and increased social acceptance occurred with individuals of higher chemical similarity in their cuticular hydrocarbon profiles. We found striking differences in chemical and behavioral strategies between the two myrmecophiles. Spider cuticular hydrocarbon profiles were chemically less similar to the host than silverfish profiles were. Nevertheless, spiders received significantly fewer attacks from host ants and survived longer in laboratory colonies, whereas silverfish were treated with high aggression and were killed more frequently. When discovered and confronted by the host, silverfish tended to escape and were chased aggressively, whereas spiders remained in contact with the confronting host ant until aggression ceased. Thus, spiders relied less on chemical mimicry but were nevertheless accepted more frequently by the host on the basis of behavioral mechanisms. These findings give insights into the fine tuning of social integration mechanisms and show the significance of qualitative differences among strategies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
In ca. 150 species of queenless ants, a specialized queen caste is rare or absent, and mated workers take over the role of the queen in some or all of the colonies. Previously, it has been shown that reproduction in queenless ants is regulated by a combination of dominance behavior and chemical fertility signaling. It is unknown, however, whether chemical signals alone can sufficiently regulate reproduction. To investigate this possibility, we studied reproductive regulation in the facultatively queenless ant Gnamptogenys striatula, a species where dominance behavior is rare or absent. Active egg layers and infertile workers showed qualitative and quantitative differences in their cuticular hydrocarbon profile. Five long-chain methyl alkanes, 3,13- and 3,15-dimethyl pentriacontane, 3,13- and 3,15-dimethyl heptentriacontane, and 3,11,15-trimethyl heptentriacontane occurred only on the cuticles of virgin and mated egg layers. Pronounced quantitative differences were found in a further 27 alkenes; alkanes; and mono-, di-, and trimethyl alkanes. Workers that had recently stopped laying eggs had profiles similar to infertile workers, and mating status did not affect this chemical pattern. We conclude that the cuticular hydrocarbon profiles of G. striatula workers provide reliable information about their current fertility. In the interest of colony productivity, this allows reproduction to be regulated without the use of aggression.  相似文献   

14.
Lysiphlebus cardui, the dominant aphidiid parasitoid of the black bean aphid,Aphis fabae cirsiiacanthoidis (Afc), on creeping thistle, is able to forage in ant-attended aphid colonies without being attacked by ants. Several behavioral observations and experimental studies led to the hypothesis thatL. cardui mimics the cuticular hydrocarbon profile of its host aphid. Chemical analysis of the cuticular extracts revealed that bothL. cardui and Afc exclusively possess saturated hydrocarbons:n-alkanes, monomethyl (MMA), dimethyl (DMA), and trimethyl alkanes (TMA). Comparison of the hydrocarbon profiles of parasitoid and aphid showed great qualitative resemblance between parasitoid and host:L. cardui possesses almost all host-specific compounds in addition to species-specific hydrocarbons of mainly higher molecular weight (>C30). However, there is a lesser quantitative correspondence between parasitoid and host aphid. Furthermore, we analyzed the cuticular hydrocarbon profile of another parasitoid of Afc,Trioxys angelicae. This aphidiid species is vigorously attacked and finally killed by honeydewcollecting ants when encountered in aphid colonies. Its cuticular hydrocarbon profile is characterized by the presence of large amounts of (Z)-11-alkenes of chain lenghts C27, C29, C31, and C33, in addition to alkanes and presumably trienes. The role of the unsaturated hydrocarbons onT. angelicae as recognition cues for aphid-attending ants is discussed.  相似文献   

15.
Cuticular hydrocarbons (CHCs) are used for chemical communication among nestmates in many ant species, and they may play a role in the discrimination of nestmates and non-nestmates. Using the mandible opening response (MOR) bioassay, we tested the response of the African termite raiding ant, Pachycondyla analis, to CHC extracts of nestmates and non-nestmates. The ants were able to distinguish control chemical cues, from nestmate CHCs, and from non-nestmate CHCs, and, based on a CHC recognition threshold, aggression was demonstrated toward non-nestmates. Gas chromatography (GC) and GC-mass spectrometric analyses showed that CHC components of different ant colonies had chain lengths ranging from C8 to C31, comprising mainly n-alkanes, alkenes, and methyl branched alkanes, with the n-alkanes occurring in the same proportions among all colonies. The ants were grouped successfully according to their colonies of origin by using discriminant analysis of CHCs. We demonstrate that nestmate recognition occurs in P. analis, and that some of the cues involved are evidently alkenes and methyl-branched alkanes.  相似文献   

16.
Tetramorium bicarinatum(Myrmicinae) is an ant species frequently found in tropical and subtropical areas, particularly in Africa, Southeast Asia (Japan), and South America (Brazil). The species is polygynous, reproduces by budding, and has sterile workers. Since the nests are widely distributed in a given area, the problem arises of territorial defense against conspecifics. Because not all ants defend territories, we assessed the defensive behavior of T. bicarinatumworkers through intraspecific and interspecific aggressiveness tests. A detailed behavioral study of the interactions between workers from several different colonies of T. bicarinatum(originating from Japan and Brazil) showed that workers do not discriminate against conspecific nonnestmate individuals, but they are highly aggressive towards allospecifics (Myrmica rubra, Myrmicinae). The results suggest that each colony from this ant species possesses a similar colonial odor. Chemical analyses of the cuticular hydrocarbons of these species were made with gas chromatography coupled to mass spectrometry. Results showed that the different colonies of T. bicarinatumpossess a common chemical profile mainly composed of straight-chain alkanes and alkenes, while M. rubrapossess more methyl-branched alkanes. We suggest that methyl alkane cues play a determining role in colonial recognition and that these results could explain the underlaying basis of the lack of intraspecific aggressiveness in T. bicarinatum.  相似文献   

17.
We analyzed the behavioral responses of the ants Camponotus rufipes and Solenopsis geminata towards all instars of Dione junio and Abananote hylonome. We also analyzed ant behavior towards hexane extracts of larvae and extracts of the spines and neck glands of the fifth instars of both species and identified the chemical compounds present. Larvae of both species were repellent to ants from the first instar onward. Later instars survived ant attacks better than earlier instars. The spines and neck glands of the larvae influenced the behavior of C. rufipes. The chemical compounds contained in the hexane extracts of whole first and fifth instars and in the spines and neck glands of fifth instars were principally carboxylic acids and terpenes. Further bioassays confirmed the repellent effect of some of these acids toward ants.  相似文献   

18.
The cuticular hydrocarbons (CHCs) of the ant Lasius niger are described. We observe a high local colony specificity of the body cuticular profile as predicted for a monogynous and multicolonial species. The CHCs show a low geographical variation among different locations in France. The CHCs on the legs also are colony specific, but their relative quantities are slightly different from those on the main body. For the first time, we demonstrate that the inner walls of the ant nest are coated with the same hydrocarbons as those found on the cuticle but in different proportions. The high amount of inner-nest marking and its lack of colony-specificity may explain why alien ants are not rejected once they succeed in entering the nest. The cuticular hydrocarbons also are deposited in front of the nest entrance and on the foraging arena, with a progressive increase in n-alkanes relative amounts. Chemical marks laid over the substrate are colony specific only when we consider methyl-branched alkanes. Our data confirm that these “footprint hydrocarbons” are probably deposited passively by the contact of ant tarsae with the substrate. These results suggest that the CHCs chemical profiles used by ants in colony recognition are much more complex than a single template: ants have to learn and memorize odors that vary depending on their context of perception.  相似文献   

19.
Interspecific relationships among insects are often mediated by chemical cues, including non-volatile cuticular compounds. Most of these compounds are hydrocarbons that necessitate the use of solvents for their extraction, identification, and manipulation during behavioral assays. The toxicity of these solvents often precludes the removal and reapplication of hydrocarbons from and to live insects. As a consequence, dummies often are used in behavioral assays, but their passivity can bias the behavior of the responding insects. To overcome these limitations, we propose a method where cuticular compounds are extracted from live ants by placing them into glass vials half-filled with tepid water (ca. 34°C) and vigorously shaking the vials to form an emulsion whose supernatant can be analyzed and/or reapplied to other ants. We demonstrate that cuticular compounds can be extracted from workers of the red fire ant, Solenopsis saevissima, and reapplied to the cuticle of workers from a sympatric species, Camponotus blandus (both Hymenoptera: Formicidae), while keeping the ants alive. Gas chromatographic-mass spectrometric analysis and behavioral assays were used to confirm the successful transfer of the behaviorally active compounds.  相似文献   

20.
Polygynous ant species often monopolize patchily distributed habitats and tolerate neighboring conspecifics while aggressively attacking other ant species. We determined that internest aggression occurs in the polygynous ant,Formica montana. We report for the first time the identities of cuticular hydrocarbons ofF. montana and present results of their possible role in nestmate recognition. Cuticular hydrocarbons contribute differentially to class discrimination, certain hydrocarbons being more class distinct.USDA-ARS, Entomologist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号