首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以钛酸正四丁酯及L-Cys为钛源和模板剂仿生合成纳米TiO2前体,采用水热合成法制备TiO2/ZnO纳米复合材料,并利用XRD、SEM、XPS、FT-IR以及比表面积及孔径分析等对TiO2/ZnO纳米复合材料进行表征。结果表明:合成TiO2/ZnO复合材料是由锐钛矿TiO2和纤锌矿ZnO组成,形貌是由许多几十纳米厚薄片组成的花状,直径在2~3μm之间,比表面积为219.54m2/g。  相似文献   

2.
聚苯胺/纳米氧化铈复合材料的合成与表征   总被引:2,自引:0,他引:2  
通过溶胶凝胶法制得平均粒径10 nm左右氧化铈纳米晶,然后以此纳米晶在位分散聚合得到了聚苯胺/纳米氧化铈复合材料,透射电镜观察这种复合材料具有核壳结构.红外分析表明,纳米氧化铈的存在导致聚苯胺的红外光谱具有明显的蓝移现象,在拉曼光谱中1240 cm-1和1352 cm-1附近的特征峰被认为是由于纳米氧化铈的存在与聚苯胺之间的化学作用产生的,聚苯胺与氧化铈之间有化学键的结合.  相似文献   

3.
聚苯胺/石墨导电复合材料的制备与表征   总被引:17,自引:0,他引:17  
根据石墨的层状结构,以可膨胀石墨(KP)或膨胀石墨(EP)为模板,应用原位聚合法成功制备了聚苯胺(PANi)石墨导电复合材料。通过FT-IR、XRD、SEM和电导率测量等手段表征了其结构和性能。结果表明,PANi/EP的电导率与单一组分相比,都有大幅度提高,而PANi/KP的电导率介于两组分之间,PANi/EP的电导率高于PANi/KP复合材料4-5倍。XRD证明,膨胀石墨与聚苯胺复合大大提高了聚苯胺的结晶度,改善了聚苯胺的结构缺陷。FT-IR表明聚苯胺的特征吸收峰发生了位移,表明KP或EP的表面官能团与聚苯胺之间发生了氢键或共轭作用。  相似文献   

4.
聚苯胺/磁性纳米复合材料具有电磁性,有广泛的应用前景,已成为纳米材料研究的热点之一.主要介绍了聚苯胺/磁性纳米复合材料的制备方法与材料性质及其应用,分析了原位聚合、溶胶-凝胶法、自组装技术等制备方法的优缺点,并指出了聚苯胺/磁性纳米复合材料的研究方向.  相似文献   

5.
综述了聚苯胺纳米复合材料的制备方法,结合典型事例详细评述了化学氧化和电化学合成法、等离子体聚合、原位聚合法、乳液和微乳液聚合、插层法、溶胶-凝胶法、自组装技术等各种制备方法的优缺点,并展望了聚苯胺纳米复合材料的研究方向与应用前景.  相似文献   

6.
利用溶胶-凝胶法和浸渍-提拉法于载玻片表面沉积了TiO2纳米薄膜,然后通过化学氧化法得到了聚苯胺/TiO2纳米复合膜。借助XRD、AFM、UV-Vis、XPS等方法对复合膜进行了表征。结果表明,所得TiO2薄膜由规则立方体外形的纳米TiO2组成,颗粒直径为20nm。包覆后所得聚苯胺/TiO2复合膜由不规则球形颗粒组成,颗粒直径增大为35nm。薄膜的UV-Vis光谱分析表明,聚苯胺/TiO2复合膜的吸收带边约为390nm,对可见光的吸收显著增强。XPS分析结果表明,复合膜中N+/N之比高达0.63,高于块体聚苯胺的0.57和理想的本征态盐中的0.5,表明掺杂程度高。  相似文献   

7.
弱磁场(0.4 T)下,采用原位聚合方法制备了重均分子量可达3×104的聚苯胺(PANI)及聚苯胺/纳米ZnO复合材料.UV-vis数据表明所制备的纳米ZnO的粒径约为3nm; FT-IR谱图表明纳米ZnO的加入使聚苯胺的特征峰向低波数方向移动;KH550改性纳米ZnO的引入显著地提高了PANI的导电性(220S/m)...  相似文献   

8.
聚苯胺-高岭土纳米复合材料的制备与表征   总被引:1,自引:0,他引:1  
苯胺分子中的氨基-NH_2可与高岭土层间氧原子或羟基—OH形成更强氢键,发生插入反应而“溶胀“。过硫酸铵引发苯胺原位聚合,成功制备了聚苯胺—高岭土纳米复合粉体。经粒度分析、SEM、XRD和导电率测定等手段,表征了复合粉体的结构与性能。结果表明:当高岭土含量达50wt.%时,复合材料的体积电导率为:0.253 S/cm。表观粒度与高岭土相比有较大幅度的提高,但分布变窄。由于层状高岭土的诱导作用,使聚苯胺的结晶度提高,聚苯胺与高岭土之间不是简单的混合,存在氢键相互作用。高岭土层间受限环境和聚苯胺与高岭土之间的氢键自组装,高岭土层间羟基—OH对聚苯胺有质子掺杂作用,使聚苯胺的结构与性能发生了变化。  相似文献   

9.
成功制备了石墨烯/聚苯胺/四氧化三锰(RGO/PANI/Mn_3O_4)纳米复合材料。首先,以过硫酸铵(APS)为氧化剂,在氧化石墨烯(GO)片层上氧化聚合苯胺单体,制备氧化石墨烯/聚苯胺(GO/PANI),再通过水热法将GO还原并热解Mn(Ac)_2·4H_2O从而制得RGO/PANI/Mn_3O_4复合材料。形貌和结构表征结果表明Mn_3O_4纳米颗粒均匀生长在以PANI为导电连接层的RGO片层上。  相似文献   

10.
魔芋葡甘聚糖/ZnO纳米复合材料的制备与表征   总被引:1,自引:0,他引:1  
用纳米ZnO为原料,以魔芋葡甘聚糖(KGM)为基体,采用共混法制得KGM/ZnO纳米复合物.通过傅立叶红外光谱(FTIR)、热重分析(TG)、透射电镜(TEM)等手段对该体系进行了表征.结果表明:由于纳米ZnO粒子的引入,KGM分子FTIR的某些特征峰的波数发生明显变化;纳米ZnO在复合物中的分散性较好;复合材料的热稳定性高于KGM薄膜;此外,复合材料的力学性能有所提高.  相似文献   

11.
以含钴介孔分子筛为催化剂、乙醇为碳源, 采用CVD法制备碳纳米管(CNTs)。通过原位合成法制备一系列不同碳纳米管含量的碳纳米管/羟基磷灰石(CNTs/HA)复合材料。分别采用XRD、FTIR、TEM、N2吸附-脱附和Raman光谱等分析手段, 对所合成CNTs/HA复合材料的晶相、结构、形貌和比表面积等进行了表征。同时研究了碳纳米管的添加量对所合成CNTs/HA复合材料形貌的影响。XRD与Raman结果表明, 所得CNTs/HA复合粉体中仅有CNTs与HA两种物相, 纯度较高, 结晶度较好; TEM结果显示, CNTs/HA复合材料中CNTs表面均匀包裹着一层纳米级的针状HA晶粒, 两者形成了较强的界面结合, 且当CNTs与HA的质量比为3:17时, CNTs与HA形成最佳结合状态; N2吸附-脱附表征结果表明, 与HA的比表面积相比, CNTs/HA复合材料具有较高比表面积。  相似文献   

12.
采用一种简单、环保的方法原位制备了纳米ZnO/聚甲基丙烯酸甲酯(nano ZnO/PMMA)复合材料,并对其抗紫外性质、透明性、光致发光性质和抗菌性进行了研究。以乙醇为溶剂在30℃溶解单体、引发剂、前驱体和催化剂;升温到80℃使甲基丙烯酸甲酯(MMA)的聚合与ZnO的合成同时进行;蒸发去除溶剂即可获得nano ZnO/PMMA复合材料。采用XRD、FTIR、TEM和UV-Vis对nano ZnO/PMMA复合材料进行表征。结果表明,已成功制备nano ZnO/PMMA复合材料;所制备的nano ZnO/PMMA复合材料能够吸收200~400 nm的紫外辐射,且在可见光区域具有高的透明度;光致发光测试表明,nano ZnO/PMMA复合材料在紫外光激发下能够发出明亮的蓝绿光;抗菌测试表明,nano ZnO/PMMA复合材料对金黄色葡萄球菌具有显著的抗菌效果,其抗菌率大于99%。多功能nano ZnO/PMMA复合材料在紫外屏蔽涂层、抗紫外有机玻璃、荧光材料、抗菌塑料制品等诸多领域有潜在应用。  相似文献   

13.
复配改性工业木质素/木纤维复合材料的制备与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
袁媛  郭明辉 《复合材料学报》2014,31(4):1098-1105
以H2O2为氧化剂对工业木质素进行改性,将H2O2氧化改性工业木质素(OMIL)与聚乙烯亚胺(PEI)复配制得复配改性工业木质素(OMIL-PEI)。以木纤维(WF)为基体,OMIL-PEI为黏结相,采用高速混合-平板热压工艺制备了环保型OMIL-PEI/WF复合材料。采用正交试验设计方法研究了H2O2用量、氧化时间、OMIL与PEI质量比及复配剂OMIL-PEI用量对该复合材料物理力学性能的影响,探索了复合材料的最优制备工艺参数,并采用FTIR、XRD、DMA和SEM对复合材料的结构和性能进行了表征。结果表明:最优工艺条件为,H2O2用量20wt%,氧化时间120 min,OMIL与PEI质量比7:1,OMIL-PEI用量20wt%,所制备的复合材料各项理化性能满足GB/T 11718-2009干燥状态下使用的承重型中密度纤维板的性能要求;OMIL-PEI能够与WF在热压过程中形成良好的化学键;优化工艺条件下的OMIL-PEI/WF复合材料的木质纤维素的晶形结构保持不变,相对结晶度从60.24%(纯WF)升高到72.91%;OMIL-PEI提高了OMIL-PEI/WF复合材料的动态储能模量,对材料的热稳定性影响不大,且各组分之间分布均匀,交织致密,界面粘结性能良好。  相似文献   

14.
ZnO/CNTs复合材料的制备、表征及光催化性能   总被引:1,自引:0,他引:1  
潘会  胡轶  兀晓文  胡帅帅  张浩茹 《材料导报》2018,32(24):4224-4229
采用水热法制备了一系列氧化锌和碳纳米管的复合材料(ZnO/CNTs),详细考察了碳纳米管的含量对复合材料光催化性能的影响。利用X射线衍射仪、紫外-可见漫反射吸收光谱、扫描电子显微镜、X射线能谱、透射电子显微镜、X射线光电子能谱和氮气吸附-脱附等测试手段对样品的结构、形貌和光学性质进行了表征,并用亚甲基蓝溶液模拟污染物,评价了ZnO/CNTs复合材料的光催化性能。结果表明:添加CNTs提高了ZnO的比表面积,增强了ZnO的可见光吸收。ZnO/CNTs复合材料较纯ZnO具有更高的光催化活性,并且随着CNTs含量的增加,ZnO/CNTs复合材料的光催化活性呈先增加后减小的趋势。当CNTs的含量为0.3%(质量分数)时,ZnO/CNTs复合材料的光催化活性最高,经过50 min光照后,亚甲基蓝的降解率达到了96.2%。  相似文献   

15.
以膨润土为载体,硝酸锌、硝酸铈和氢氧化钠为原料,采用沉淀法制备了Ce掺杂ZnO/膨润土复合光催化材料.利用X射线衍射(XRD)、红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附仪等对其进行表征,并通过对亚甲基蓝(MB)溶液脱色反应,考察紫外光照射下复合材料的光催化性能.结果表明,复合光催化材料中由于Ce掺杂ZnO的光催化作用与膨润土的吸附性相互协同,显示出优良的光催化活性和稳定性.当Ce的掺杂量为3.0%,同时复合光催化材料的加入量为20 mg/L,MB溶液的pH值为6时,复合光催化材料的性能最优,在紫外灯下照射2 h后,MB溶液的脱色率达到98.6%.  相似文献   

16.
以纳米乙炔炭黑在反应体系中的聚集体为模板,采用化学氧化法制备了多孔形貌的聚苯胺。讨论了乙炔炭黑经硝酸液相氧化处理对聚苯胺/炭黑复合材料形貌、导电性及热性能的影响。研究结果表明,在聚苯胺掺杂酸盐酸用量增加到80mL时两种复合材料都具有多孔结构,并且由于炭黑经硝酸液相氧化后分散性及表面性质得到改善,产物呈现出明显的一维线性结构,该复合材料电导率高达5.55S/cm。多孔复合材料热分解温度均在430℃左右。  相似文献   

17.
利用聚乙二醇接枝的多壁碳纳米管(MWNT-g-PEG)作为介质,在低温下,通过溶胶-凝胶法在PEG修饰后的MWNT表面负载花瓣状的纳米氧化锌(ZnO)。通过X射线衍射、红外波谱、扫描电镜和透射电镜对MWNT-g-PEG/ZnO纳米复合材料进行表征和分析。结果表明ZnO纳米粒子和MWNT之间结合紧密,ZnO的尺寸比较均一,推测了ZnO纳米粒子在MWNT表面的生长机理。MWNT表面的PEG对ZnO的负载起着重要的作用,它是ZnO原位生长的活性点。  相似文献   

18.
以聚四氟乙烯多孔膜为基膜,采用膜相渗透原位化学氧化聚合法制备了PAn/PTFE复合膜;在该复合膜表面通过电化学沉积金属钯微粒,得到了Pd/PAn/PTFE复合膜,通过测定复合膜在空气中和一定浓度氢气气氛中的V-I特性,表征复合膜对氢气响应性能。实验考察了电沉积过程中沉积时间、氯化钯浓度和盐酸浓度对复合膜性能的影响,当氯化钯浓度为2mol/L、盐酸浓度为0.5mol/L、沉积时间为6min时,复合膜在吸氢前后表现出最大的电流变化值,通过扫描电镜和X射线衍射仪对复合膜进行了表征。初步讨论了该复合膜对氢气表现出电流响应性的机理。  相似文献   

19.
氧化锌晶须及其复合材料的应用   总被引:12,自引:0,他引:12  
ZnO晶须是一种生长成立体四针状的单晶体微纤维,本文结合作者实验室的工作,介绍该材料的性能、其复合材料及应用。  相似文献   

20.
以纳米晶纤维素(NCC)为形貌诱导模板,醋酸锌(Zn(CH3COO)2·2H2O)为Zn源,采用原位聚合法制备NCC/ZnO纳米杂化物,再经550℃高温碳化,得到生物质炭/ZnO复合材料。采用TEM、XRD、BET、UV-Vis测试研究生物质炭与ZnO固体质量比(0.03:1、0.17:1、0.67:1)对生物质炭/ZnO复合材料形貌、晶体结构、孔结构及光吸收性能的影响。并进一步以亚甲基蓝(MB)为模型污染物,研究生物质炭/ZnO复合材料的吸附-光催化性能,阐明其吸附-光催化机制。结果表明,经550℃高温碳化后,NCC转化为具有石墨微晶结构的生物质炭,其骨架结构得以保留,纳米ZnO均匀负载在生物质炭表面,形成生物质炭/ZnO复合材料。与纯纳米ZnO相比,生物质炭/ZnO复合材料比表面积显著提高,具备优异的吸附性能,同时,NCC转化得到的生物质炭有效提高了ZnO的光生电子-空穴对的分离率。生物质炭/ZnO复合材料通过吸附-光催化协同效应去除水体中的MB,去除率显著增加。当生物质炭与ZnO的固体质量比为0.17:1时,生物质炭/ZnO复合材料的平均孔径为188.99 nm,比表面积为33.51 m2/g,在室温条件下,避光吸附30 min后,再使用500 W紫外灯照射20 min,即对MB降解率达到99.8%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号