共查询到20条相似文献,搜索用时 15 毫秒
1.
Broad-band nondestructive ion detection is achieved in a quadrupole ion trap mass spectrometer by impulsive excitation of a collection of trapped ions of different masses and recording of ion image currents induced on a small detector electrode embedded in but isolated from the adjacent end cap electrode. The image currents are directly measured using a simple differential preamplifier, filter, and amplifier combination and then Fourier analyzed to obtain broad-band frequency domain spectra characteristic of the sample ions. The use of the detector electrode provides a significant reduction in capacitive coupling with the ring electrode. This minimizes coupling of the rf drive signal, which can saturate the front-end stage of the detection circuit and prevent measurement of the relatively weaker ion image currents. Although impulsive excitation is preferred due to its broad-band characteristics and simplicity of use, results are also given for narrow-band ac and broad-band SWIFT (stored wave-form inverse Fourier transform) excitation. Data using argon, acetophenone, and n-butylbenzene show that a resolution of better than 1000 is obtained with a detection bandwidth of 400 kHz. An advantage of nondestructive ion detection is the ability to measure a single-ion population multiple times. This is demonstrated using argon as the sample gas with an average remeasurement efficiency of >90%. Tandem mass spectrometry experiments using a population of acetophenone ions are also shown. 相似文献
2.
A microscopic laser desorption/postionization Fourier transform mass spectrometer (LD/FTMS) is described. The lateral resolution can be <1 μm with the inherent FTMS high mass resolution intact. Laser postionization allows a certain selectivity and an increase in sensitivity. This capability should allow materials characterization in a wide variety of cases. We demonstrate microscopic desorption and postionization for atoms and molecules. 相似文献
3.
Successful application of the Hadamard transform (HT) technique to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) is described. Novel sample injection devices were developed to achieve multiple sample injections in both GC and LC instruments. Air pressure was controlled by an electromagnetic valve in GC, while a syringe pump and Tee connector were employed for the injection device in LC. Two well-known, abused drugs, 3,4-methylenedioxy-N-methylamphetamine (MDMA) and N, N-dimethyltryptamine (DMT), were employed as model samples. Both of the injection devices permitted precise successive injections, resulting in clearly modulated chromatograms encoded by Hadamard matrices. After inverse Hadamard transformation of the encoded chromatogram, the signal-to-noise (S/N) ratios of the signals were substantially improved compared with those expected from theoretical values. The S/N ratios were enhanced approximately 10-fold in HT-GC/MS and 6.8 in HT-LC/MS, using the matrices of 1023 and 511, respectively. The HT-GC/MS was successfully applied to the determination of MDMA in the urine sample of a suspect. 相似文献
4.
Cappadona S Levander F Jansson M James P Cerutti S Pattini L 《Analytical chemistry》2008,80(13):4960-4968
We present a new method for rejecting noise from HPLC-MS data sets. The algorithm reveals peptides at low concentrations by minimizing both the chemical and the random noise. The goal is reached through a systematic approach to characterize and remove the background. The data are represented as two-dimensional maps, in order to optimally exploit the complementary dimensions of separation of the peptides offered by the LC-MS technique. The virtual chromatograms, reconstructed from the spectrographic data, have proved to be more suitable to characterize the noise than the raw mass spectra. By means of wavelet analysis, it was possible to access both the chemical and the random noise, at different scales of the decomposition. The novel approach has proved to efficiently distinguish signal from noise and to selectively reject the background while preserving low-abundance peptides. 相似文献
5.
M E Belov G A Anderson N H Angell Y Shen N Tolic H R Udseth R D Smith 《Analytical chemistry》2001,73(21):5052-5060
The characterization of cellular proteomes is important for understanding biochemical processes ranging from cell differentiation to cancer development. In one highly promising approach, whole protein extracts or fractions are digested (e.g., with trypsin) and injected into a packed capillary column for subsequent separation. The separated peptides are then introduced on-line to an electrospray ionization source of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer for the detection of peptide accurate mass tags that serve as biomarkers for their parent proteins. In this work, we report the use of data-dependent selective external ion ejection in conjunction with FTICR and on-line capillary LC separations for the enhanced characterization of peptide mixtures and a yeast extract proteome. The number of peptides identified in an LC-FTICR analysis of a yeast proteome digest employing data-dependent rf-only dipolar ejection of the most abundant ion species prior to ion accumulation was 40% higher than that detected in a separate LC-FTICR analysis using conventional nonselective ion accumulation. 相似文献
6.
The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the precision and accuracy, an alternative approach, i.e., eluting the compound on the plateau of temperature studied was reported here. Other experiments with temperature-programmed LC-IRMS experiments are also reported with the presence of methanol in the injected solution to mimic residual solvent originating from the sample preparation or to slightly increase the solubility of the targeted compound for high-precision measurement. 相似文献
7.
A new pulsed-gas glow discharge (GD) source has been developed for use with an external ion source Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. With pulsed argon gas introduction into the GD source, the gas load and pressure in the mass analyzer region were greatly reduced; this resulted in improved mass resolution. Mass resolution of greater than 1?450?000 (fwhm) has been achieved for Cu(+) ions from a brass sample, the highest reported for any type of GD mass spectrometer. The pulsed-gas GD source promises analytical usefulness for ultrahigh resolution measurements in GD mass spectrometry. 相似文献
8.
We have coupled atmospheric pressure photoionization (APPI) to a home-built 9.4-T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Analysis of naphtho[2,3-a]pyrene and crude oil mass spectra reveals that protonated molecules, deprotonated molecules, and radical molecular ions are formed simultaneously in the ion source, thereby complicating the spectra (>12 000 peaks per mass spectrum and up to 63 peaks of the same nominal mass), and eliminating the "nitrogen rule" for nominal mass determination of number of nitrogens. Nevertheless, the ultrahigh mass resolving power and mass accuracy of FT-ICR MS enable definitive elemental composition assignments, even for doublets as closely spaced as 1.1 mDa (SH3(13)C vs (12)C4). APPI efficiently ionizes nonpolar compounds that are unobservable by electrospray and allows nonpolar sulfur speciation of petrochemical mixtures. 相似文献
9.
Fourier transform (FT) laser microprobe mass spectrometry (LMMS) aims at the characterization of local constituents at the surface of solids. Signals from structural fragments specify the main building blocks of the analyte while adduct ions, consisting of one or two intact analyte molecules and a stable ion, allow specific identification of the molecule. A series of inorganic reference compounds including binary salts, oxides, and oxy salts was analyzed to assess the FT LMMS capabilities for the determination of the inorganic molecular composition. Compounds from different classes can be tentatively identified by deductive reasoning while those with the same elements in different stoichiometries require comparison with reference spectra. 相似文献
10.
T. Williams 《Journal of Materials Science》1970,5(9):811-820
Gel permeation chromatography (GPC) enables the molecular weight distribution of a polymer sample to be determined in two or three hours. In the few years since its development it has revolutionised polymer characterisation. This review describes the essentials of the technique, its history and its relevance to polymer technology. Apparatus for GPC is also described with greatest emphasis being given to apparatus similar to that commercially available from Waters Associates Inc. The problems associated with chromatogram interpretation, instrumental broadening and calibration are discussed. 相似文献
11.
12.
13.
Crawford KE Campbell JL Fiddler MN Duan P Qian K Gorbaty ML Kenttämaa HI 《Analytical chemistry》2005,77(24):7916-7923
Laser-induced acoustic desorption (LIAD) coupled with a 3-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) allows the simultaneous analysis of both the nonpolar and polar components in petroleum distillates. The LIAD/FT-ICR method was validated by examining model compounds representative of the various classes of polar and nonpolar hydrocarbons commonly found in petroleum. LIAD successfully desorbs all the compounds as intact neutral molecules into the FT-ICR. Electron ionization (EI) at low energies (10 eV) and chemical ionization using cyclopentadienyl cobalt radical cation (CpCo*+) were employed to ionize the desorbed molecules. The EI experiments lead to extensive fragmentation of many of the hydrocarbon compounds studied. However, the CpCo*+ ion ionizes all the hydrocarbon compounds by producing only pseudomolecular ions without other fragmentation, with the exception of one compound (*CH3 loss occurs). Examination of two different petroleum distillate samples revealed hundreds of compounds. The most abundant components have an even molecular weight; i.e., they are likely to contain no (or possibly an even number of) nitrogen atoms. 相似文献
14.
Carbohydrate analysis by desorption electrospray ionization fourier transform ion cyclotron resonance mass spectrometry 总被引:1,自引:0,他引:1
We report the use of desorption electrospray ionization hybrid Fourier transform ion cyclotron resonance mass spectrometry (DESI-FT-ICR-MS) for the analysis of carbohydrates. Spectra of neat carbohydrates are presented along with their mass measurement accuracies and limits of detection. Furthermore, a comparison is made between the analyses of O-linked glycans from mucin by DESI-FT-ICR-MS and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Finally, glycans from mucin are identified by using the high mass measurement accuracy and tandem MS capabilities afforded by the hybrid FT-ICR-MS platform. 相似文献
15.
We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier transform ion cyclotron resonance mass spectrometers to facilitate analysis of nonvolatile, thermally labile compounds. This "next generation" LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power-limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0x10(9) W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density approximately 9.0x10(8) W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD-evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules. 相似文献
16.
Electron detachment dissociation (EDD), recently introduced by Zubarev and co-workers for the dissociation of multiply charged biomolecular anions via a radical ion intermediate, has been shown to be analogous to electron capture dissociation (ECD) in several respects, including more random peptide fragmentation and retention of labile posttranslational modifications. We have previously demonstrated unique fragmentation behavior in ECD compared to vibrational excitation for oligodeoxynucleotide cations. However, that approach is limited by the poor sensitivity for oligonucleotide ionization in positive ion mode. Here, we show implementation of EDD on a commercial Fourier transform ion cyclotron resonance mass spectrometer utilizing two different configurations: a heated filament electron source and an indirectly heated hollow dispenser cathode electron source. The dispenser cathode configuration provides higher EDD efficiency and additional fragmentation channels for hexamer oligodeoxynucleotides. As in ECD, even-electron d/w ion series dominate the spectra, but we also detect numerous a/z (both even-electron and radical species), (a/z - B), c/x, (c/x - B), and (d/w - B) ions with minimal nucleobase loss from the precursor ions. In contrast to previous high-energy collision-activated dissociation (CAD) and ion trap CAD of radical oligonucleotide anions, we only observe minimum sugar cross-ring cleavage, possibly due to the short time scale of EDD, which limits secondary fragmentation. Thus, EDD provides fragmentation similar to ECD for oligodeoxynucleotides but at enhanced sensitivity. Finally, we show that noncovalent bonding in a DNA duplex can be preserved following EDD, illustrating another analogy with ECD. We believe the latter finding implies EDD has promise for characterization of nucleic acid structure and folding. 相似文献
17.
Electrochemically modulated liquid chromatography (EMLC) has been coupled to an electrospray mass spectrometer. This combination takes advantage of the ability of EMLC to manipulate retention and enhance separation efficiency solely through changes in the potential applied to a conductive stationary phase, thereby minimizing complications because of possible changes in analyte ionization efficiencies when gradient elution techniques are used. Three examples are presented that demonstrate the attributes of this EMLC/electrospray mass spectrometry (ES-MS) coupling. The first two examples involve the separation of mixtures of corticosteroids or of benzodiazepines, showing the general utility of the union for eluent identification and low-level detection. The ability to identify products from on-column redox transformations is also demonstrated using the benzodiazepine mixture. The third example investigates the electrooxidation of aniline by utilizing an EMLC column as an on-line electrochemical reactor and product separator and ES-MS for detection and product identification. 相似文献
18.
Desorption electrospray ionization (DESI) was demonstrated as a means to couple thin-layer chromatography (TLC) with mass spectrometry. The experimental setup and its optimization are described. Development lanes were scanned by moving the TLC plate under computer control while directing the stationary DESI emitter charged droplet plume at the TLC plate surface. Mass spectral data were recorded in either selected reaction monitoring mode or in full scan ion trap mode using a hybrid triple quadrupole linear ion trap mass spectrometer. Fundamentals and practical applications of the technique were demonstrated in positive ion mode using selected reaction monitoring detection of rhodamine dyes separated on hydrophobic reversed-phase C8 plates and reversed-phase C2 plates, in negative ion full scan mode using a selection of FD&C dyes separated on a wettable reversed-phase C18 plate, and in positive ion full scan mode using a mixture of aspirin, acetaminophen, and caffeine from an over-the-counter pain medication separated on a normal-phase silica gel plate. 相似文献
19.
The use of liquid chromatography coupled to sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) for the specific detection of sulfur-containing compounds is described. In the sulfur-containing drug substance cimetidine, structurally related impurities well below the 0.1% mass fraction level relative to the main drug substance could easily be detected. The structure of most of the impurities was confirmed by electrospray mass spectrometry (ESI-MS), and thus, the complementarity of the two techniques for drug analysis is shown. The limit of detection by SF-ICP-MS for cimetidine in solution was approximately 4-20 ng x g(-1), but it was blank-limited. 相似文献
20.
Electrospray ionization fourier transform ion cyclotron resonance mass spectrometry of human alpha-1-acid glycoprotein 总被引:1,自引:0,他引:1
The ultrahigh resolution and sensitivity of electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry have for the first time been exploited for the characterization of highly sialylated glycoproteins, using human alpha-1-acid glycoprotein as the model compound. An alternative approach to the widely used high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization (MALDI) assays is described. This new method does not require any enzymatic or chemical digestion (removal of sialyl groups or deglycosylation), chemical derivatization (introduction of chromophore groups), or preliminary chromatographic separation (HPLC or electrophoresis). Following ESI and accumulation of ions in a hexapole ion guide, ions are injected into the ICR cell. A selected mass window from the overall ion population is isolated and axialized prior to detection. After acquisition and Fourier transform of the transient signal the resulted spectrum is evaluated in order to determine the charge state of the detected ions and the isotope pattern of the measured protein glycoform. The presence of ions from the same glycoform with different charge states was confirmed. The advantages and limitations of the technique are discussed. Future prospects and possible applications are indicated. 相似文献