共查询到20条相似文献,搜索用时 15 毫秒
1.
A monolithic capillary electrophoresis system with integrated on-chip fluorescence detector has been microfabricated on a silicon substrate. Photodiodes in the silicon substrate measure fluorescence emitted from eluting molecules. The device incorporates an on-chip thin-film interference filter that prevents excitation light from inhibiting the fluorescence detection. A transparent AZO conducting ground plane is also used to prevent the high electric fields used for the separation from interfering with the photodiode response. Separations of DNA restriction fragments have been performed in these devices with femtogram detection limits using SYBR Green I intercalating dye. 相似文献
2.
《Materials science & engineering. C, Materials for biological applications》2006,26(2-3):282-289
This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p–n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems. 相似文献
3.
The attractive behavior and advantages of a diamond electrode detector for a micromachined capillary electrophoresis (CE) system are discussed. A chemically vapor-deposited boron-doped diamond (BDD) film band (0.3 x 6.0 mm) electrode is used for end-column amperomettic detection. The favorable performance of the diamond electrode microchip detector is indicated from comparison to a commonly used thick-film carbon detector. The diamond electrode offers enhanced sensitivity, lower noise levels, and sharper peaks for several groups of important anaytes (nitroaromatic explosives, organophosphate nerve agents, phenols). The favorable signal-to-background characteristics of the BDD-based CE detector are coupled with a greatly improved resistance to surface fouling and greater isolation from high separation voltages. The enhanced stability is indicated from a RSD of 0.8% for 60 repetitive measurements of 5 ppm 2,4,6-trinitrotoluene (vs RSD of 10.8% at the thick-film carbon electrode). A highly linear response is obtained for the explosives 1,3-dinitrobenzene and 2,4-dinitrotoluene over the 200-1,400 ppb range, with detection limits of 70 and 110 ppb, respectively. Factors influencing the performance of the BDD detector are assessed and optimized. The attractive properties of BDD make it very promising material for electrochemical detection in CE microchip systems and other micromachined flow analyzers. 相似文献
4.
A novel aerosol chemiluminescent (CL) detector coupling to capillary electrophoresis (CE) for the detection of saccharides is reported. This CL detector is composed of a postcapillary nebulizer and porous alumina as catalyzer in quartz tube. The CL emission could be generated due to the catalyzing oxidization of saccharides on the surface of porous alumina. The saccharides such as sucrose, alpha-lactose, maltose, raffinose, galactose, xylose, and glucose with only weak UV absorbance can be successfully detected. The linear ranges of those saccharides are from 30-2000 to 50-2000 mg/L; relative standard deviations range from 2.1 to 3.7% (200 mg/L, n = 11). Compared with the traditional UV detector currently used in CE, this novel detector shows the advantage of high sensitivity to the compounds with only weak UV absorption. Thus, it could be an important supplement of CE detectors for UV-lacking compounds. 相似文献
5.
A contactless conductivity-based absorbance detector has been developed for use with capillary separations. Detection is based on a photothermal process. As analytes pass through the detector they absorb light, producing a thermal perturbation. This thermal event results in a change in the solution conductivity. The measured change in conductivity is directly related to the absorption of light. The major advantage to this type of detector is that the measured absorbance is, to a first approximation, independent of optical path length, allowing small-diameter capillaries to be used. This approach combines the optical simplicity of traditional transmission-based instruments with the path length independence of similar refraction-based photothermal detectors. In addition to the initial development and characterization of the photothermal absorbance detector, multiphysical modeling of the heat transfer within the conductivity cell was performed. 相似文献
6.
An on-capillary electrochemical detector for capillary electrophoresis is described. It consists of a gold wire mounted permanently at the end of the capillary perpendicular to the direction of flow. This mode of detection eliminates the need for the micromanipulators or specially machined cell holders for alignment that are used for in-capillary detection modes. It also makes it possible to perform relatively fast CEEC separations using very short capillaries. The use of this detector for both off-column detection of catecholamines and end-column detection of carbohydrates by CE-PAD is described. 相似文献
7.
Pumera M Wang J Opekar F Jelínek I Feldman J Löwe H Hardt S 《Analytical chemistry》2002,74(9):1968-1971
A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices. 相似文献
8.
A new movable contactless-conductivity detection system for microchip capillary electrophoresis is introduced. Such a versatile system relies on positioning the detector at different points along the separation channel via "sliding" the electrode holder. The new movable microchip detection system offers distinct improvements compared to common fixed-location conductivity detectors. For example, placing the detector at different locations along the microchannel offers useful insights into the separation process. Three-dimensional plots of resolution/channel length/separation voltage can be used for optimizing the separation process and selecting the analysis time. The system enables rapid switching between "total" (unresolved) and "individual" (resolved/fingerprint) signals on the basis of placing the detector at the beginning and end of the separation channel, respectively. By moving the detector to a shorter effective separation length, after eluting fast-migrating ions, shorter analysis times can be achieved (through faster detection of late-eluting analytes). These and other improvements in the analytical performance and insights into the separation process are illustrated in connection with the detection of low-energy ionic explosives and nerve agent degradation products. 相似文献
9.
This paper describes an improved format for Shah convolution Fourier transform (SCOFT) detection that utilizes the spatial resolution of a charge-coupled device (CCD) rather than a fixed optical mask to perform a Shah or sine convolution over a fluorescence signal. The laser-induced fluorescence from a 9-mm section of microfabricated channel is collected with a CCD at 28 Hz. Each image frame is multiplied by a convolution function to modulate the collected signal through space. Each frame is then summed to generate an intensity-versus-time data set for Fourier analysis. The fluorescence signal oscillates at a frequency dependent upon both the convolution function multiplied across each data frame and the velocity of fluorescent microspheres or a plug of fluorescent dye flowing through the channel. This SCOFT technique affords more flexibility over formats that employ a physical mask and provides data that can be optimized for signal-to-noise (S/N) or resolution information. A 1,000-fold improvement in S/N is demonstrated for a plug of fluorescein dye. Detection of fluorescent beads exhibited frequency signals that were dependent upon the bead size distribution, the electric field, and the electrophoresis buffer concentration. Data are presented demonstrating the quantitation of fluorescent microspheres. 相似文献
10.
We have developed an integrated light collimating system with a microlens and a pair of slits for extended optical path length absorbance detection in a capillary electrophoresis (CE) microchip. The collimating system is made of the same material as the chip, poly(dimethylsiloxane) (PDMS), and it is integrated into the chip during the molding of the CE microchannels. In this microchip, the centers of an extended 500-microm detection cell and two optical fibers are self-aligned, and a planoconvex microlens (r = 50 microm) for light collimation is placed in front of a light-delivering fiber. To block stray light, two rectangular apertures, realized by a specially designed three-dimensional microchannel, are made on each end of the detection cell. In comparison to conventional extended detection cell having no collimator, the percentage of stray radiation readout fraction in the collimator integrated detection cell is significantly reduced from 31.6 to 3.8%. The effective optical path length is increased from 324 to 460 microm in the collimator integrated detection cell. The detection sensitivity is increased by 10 times in the newly developed absorbance detection cell as compared to an unextended, 50-microm-long detection cell. The concentration detection limit (S/N = 3) for fluorescein in the collimator integrated detection cell is 1.2 microM at the absorbance detection limit of 0.001 AU. 相似文献
11.
A new preconcentration device was developed for analysis of proteins by capillary electrophoresis (CE). The microfluidic device uses an electric field to capture proteins that pass through the system. The capture zone is maintained in the flow stream by the interaction between hydrodynamic and electrical forces. The device consists of a flow channel made of PEEK tubing with two electrical junctions, each of which is covered with a conductive membrane. A syringe pump provides the flow stream and also allows the injection of up to 13.5 microL of a dilute sample. The system can be easily connected to a CE device postcapture for off-line preconcentration of proteins. For the proteins used in this study, preconcentration factors up to 40-fold can be achieved. CE detection limits for bovine carbonic anhydrase, alpha-lactalbumin and beta-lactoglobulins A and B were in the nanomolar range using UV detection at 200 nm. Preconcentration is dependent on both time and initial protein concentration. We show the possibility of using an off-line fluidic preconcentrator device employing counterflow capillary electrophoresis with minimum sample manipulation, achieving detection limits similar to on-line approaches. 相似文献
12.
The assembly and characterization of dual-electrode amperometric detection for capillary electrophoresis are described. The detector consists of a disk electrode and an integrated on-capillary electrode fabricated by depositing a gold film onto the end of the separation capillary. The two electrodes are brought together, aligned, and fixed in position using a pair of acrylic plates with a straight groove on one of the plates, the same design as that of a conventional end-column detector. A portion of the on-capillary electrode is parallel-opposed to the disk electrode in a thin-layer geometry. In this region, the redox cycling established between these two electrodes significantly enhances the amperometric signals of electrochemically reversible analytes. For measurements of dopamine in pH 6.9 phosphate electrolyte with a 12.5-μm-i.d. capillary, such a configuration is 10-fold more sensitive than conventional end-column detection. The linear range exceeds 4 orders of magnitude (1.2 mM-50 nM) and the detection limit is 12 nM (4.2 amol, S/N = 3). Various modes of potential settings for the dual-electrode detection are also discussed. 相似文献
13.
We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future. 相似文献
14.
A very simple and highly sensitive capillary array gel electrophoresis system is constructed to analyze DNA fragments. On-column detection of DNA migration in a large number of gel-filled capillaries is carried out using side-entry laser irradiation and with a CCD camera, although it has been considered impossible because the irradiation laser is scattered strongly at the surfaces of the first few capillaries. By optimizing optical conditions, the laser beam can be focused repeatedly to irradiate all the capillaries held on a plate by working each capillary as a cylindrical convex lens. DNA sequencing samples migrating in 24 capillaries can simultaneously be analyzed with the system. 相似文献
15.
Contactless conductivity detection was carried out on a planar electrophoresis device by capacitive coupling using an ac excitation voltage of 500 V(p-p) and a frequency of 100 kHz. It was possible to carry out detection in this way through a cover plate of 1 mm thickness. Better sensitivity is obtained, however, by placing the electrodes into troughs that allow tighter coupling to the separation channel. The 3 x S/N detection limits are 0.49, 0.41, and 0.35 microM for the small inorganic ions K+, Na+, and Mg2+. The detection of heavy metals is demonstrated with the example of Mn2+, Zn2+, and Cr3+ with detection limits of 2.1, 2.8, and 6.8 microM, respectively. The universal nature of the method is further illustrated by the detection of citric and lactic acids, which are of interest in food and beverage analysis, and detection of three antiinflammatory nonsteroid drugs, 4-acetamidophenol, ibuprofen, and salicylic acid, as examples of species of pharmaceutical interest. 相似文献
16.
In this paper, the construction and performance of a rugged device for postcolumn derivatization in capillary electrophoresis (CE) are described. The device was based on a gap design, and a gap with a very small distance (<3 μm, estimated under microscope) could be easily constructed without micromanipulation. Addition of derivatizing reagents into the reaction capillary was attributable to gravity flow. The concentration of derivatizing reagents can be controlled through manipulating the electroosmotic flow in the reaction capillary and the height of the liquid levels from the derivatizing reagents to the buffer reservoirs. The device has been applied in fluorescence detection of amino acids using a mixture of o-phthaldialdehyde/2-mercaptoethanol as derivatizing reagent. Theoretical plate numbers for 11 amino acids separated in a pH 9.5 borate buffer were obtained in the order of 40?000-250?000. The detection limit for glycine (S/N = 2) was found to be 6.7 × 10(-)(7) mol/L using a commercial HPLC fluorescence detector modified for CE. Free amino acids in a wine sample were also determined. Because the device is quite stable, we believe that it can be used routinely in analytical laboratories. 相似文献
17.
Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis 总被引:12,自引:0,他引:12
Shi Y Simpson PC Scherer JR Wexler D Skibola C Smith MT Mathies RA 《Analytical chemistry》1999,71(23):5354-5361
The design, fabrication, and operation of a radial capillary array electrophoresis microplate and scanner for high-throughput DNA analysis is presented. The microplate consists of a central common anode reservoir coupled to 96 separate microfabricated separation channels connected to sample injectors on the perimeter of the 10-cm-diameter wafer. Detection is accomplished by a laser-excited rotary confocal scanner with four color detection channels. Loading of 96 samples in parallel is achieved using a pressurized capillary array system. High-quality separations of 96 pBR322 restriction digest samples are achieved in < 120 s with the microplate system. The practical utility and multicolor detection capability is demonstrated by analyzing 96 methylenetetrahydrofolate reductase (MTHFR) alleles in parallel using a noncovalent 2-color staining method. This work establishes the feasibility of performing high-throughput genotyping separations with capillary array electrophoresis microplates. 相似文献
18.
We report a compact, two-dimensional direct-reading fluorescence spectrograph and demonstrate its application to DNA sequencing by capillary array electrophoresis. The detection cuvette is based on sheath flow, wherein the capillaries terminate in a two-dimensional array in a fluid-filled chamber that is pressurized with buffer. A thin metal plate is located downstream from the capillaries. This barrier plate has an array of holes that precisely matches the location of the capillaries. Buffer flows through the holes, drawing analyte from the capillaries in a well-defined array of thin filaments. Fluorescence is excited in the upper chamber with an elliptically shaped laser beam. The bottom chamber is sealed with a glass window and drained from the side. Fluorescence is detected by imaging the illuminated sample streams through the holes in the barrier plate. A prism is used to disperse fluorescence from each sample across a CCD camera so that the emission spectrum is monitored simultaneously from each capillary. The instrument is demonstrated in a 32-capillary configuration but can be scaled to several thousand capillaries. 相似文献
19.
Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis 总被引:5,自引:0,他引:5
A microfabricated 384-lane capillary array electrophoresis device is developed and utilized for massively parallel genetic analysis. The 384 capillary lanes, arrayed radially about the center of a 200-mm-diameter glass substrate sandwich, are constructed using scalable microfabrication techniques derived from the semiconductor industry. Samples are loaded into reservoirs on the perimeter of the wafer, separated on the 8-cm-long poly(dimethylacrylamide) gel-filled channels, and detected with a four-color rotary confocal fluorescence scanner. The performance and throughput of this bioanalyzer are demonstrated by simultaneous genotyping 384 individuals for the common hemochromatosis-linked H63D mutation in the human HFE gene in only 325 s. This lab-on-a-chip device thoroughly exploits the power of microfabrication to produce high-density capillary electrophoresis arrays and to use them for high-throughput bioanalysis. 相似文献
20.
A high-efficiency cross-flow micronebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometry. 总被引:2,自引:0,他引:2
A pneumatic nebulizer interface for capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICPMS) is reported. The interface is constructed using a high-efficiency cross-flow micronebulizer (HECFMN) and has the following features. (1) Makeup solutions can be fed to the interface by nebulizer self-aspiration and liquid gravity pressurization. (2) The liquid dead volume of the interface is approximately 65 nL, much smaller than those (200-2500 nL) reported for other interfaces. (3) The interface can be stably operated at a liquid flow rate down to 5 microL/min with a high analyte transport efficiency up to 95% to the plasma and (4) does not induce noticeable laminar flow in the CE capillary at typical nebulizer gas flow rates of 0.8-1.2 L/min. Because of these features, baseline resolution of 10 lanthanides with a CE-ICPMS system using the HECFMN interface is achieved, and detection limits and peak asymmetry are 0.05-1 microg/L and 0.93-1.23, respectively, improved significantly over those reported previously for a CE-ICPMS system using a high-efficiency nebulizer interface. Peak precision for the 10 lanthanides is in the range of 6.2-12.3% RSD (N = 5). Peak widths are from 9.1 s for 139La to 17.9 s for 175Lu. The effects of nebulizer gas flow rate, makeup solution flow rate, and spray chamber volume on CE-ICPMS signal intensity and separation are also evaluated for the HECFMN interface by the separation of Cr3+ and Cr2O7(2-). 相似文献