首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
A perturbation method is developed to analyze the mass loading sensitivity of planar composite acoustic gravimetric sensors. The sensitivity formulas are obtained in explicit forms for the two lowest sagittal (D1 and D2) modes, the lowest shear horizontal (SH0) mode and high-order SHm modes in a two-layer isotropic composite plate sensor. The composite plate consists of a plate of thickness b coated by a film of thickness h on which the mass loading layer of infinitesimal thickness is deposited. This coating can be a chemically selective film which is assumed to be acoustically thin (h≪λ), where λ is the acoustic wavelength. For Love modes supported by a film coated on a semi-infinite substrate and for Rayleigh modes on a semi-infinite substrate, the sensitivity formulas are expressed in analytical form. These formulas specify the contribution of each material parameter in the substrate and film, and of the elasticity of the mass loading layer for each planar sensor, and provide a general guide for enhancing the sensor sensitivity  相似文献   

2.
Viscoelastic properties of chemically sensitive coatings can enhance the mass sensitivity of quartz-crystal-microbalance (QCM) sensors. If analyte sorption is accompanied by a change of the viscoelastic properties of the coating material, the accumulated mass cannot be calculated from the frequency shift without further information. We developed a sensor concept, which is based on a double-layer arrangement, permitting acoustic amplification and chemical sensitivity to be separated. With a proper selection of materials, the first layer realizes a constant acoustic amplification of the mass effect; the chemically sensitive layer acts purely gravimetrically. Major sensor design parameters are the shear modulus and the thickness of the first layer. From the acoustic point of view, the thickness of the chemically active layer and its material properties are less critical; a glasslike, rigid coating is preferred for a stable sensor transfer function. Simultaneous measurement of the resonant frequency of the quartz crystal and its motional resistance can be exploited to check the acoustic amplification.  相似文献   

3.
The selection of sensitive coatings is a critical task in the design and implementation of chemical sensors using coated thickness shear mode quartz crystal resonators (QCRs) for detection in liquid environments. This design or selection is performed through a study of the sorption process in terms of the partition coefficients of the analytes in the coatings. The partition coefficient, which is controlled by the chemical and physical properties of the coating materials, determines the inherent selectivity and sensitivity toward analyte molecules. The selection of the coatings is logically determined by the interactions between coating and target analyte molecules, but can also be made through a systematic variation of the coating's properties. The determination of the partition coefficients is only accurate if all contributions to the total measured frequency shifts, deltafs, of the coated QCR can be established. While mass loading is often assumed to be the dominant factor used in determining partition coefficients, viscoelastic effects may also contribute to deltafs. Both the effect of viscoelastic properties and the effect of mass loading on the sensor responses are investigated by using a network analyzer and oscillator circuit and by characterizing the total mechanical impedance of the loaded sensor. Different types of coatings including rubbery and glassy polymers are investigated, and the targeted analytes include classes of polar compounds (methanol), nonpolar compounds (toluene, xylenes), and chlorinated hydrocarbons (trichloroethylene, tetrachloroethylene, etc). It is seen that changes in viscoelastic properties due to analyte sorption may be significant enough to place the sensor in the nongravimetric regime. However, for most applications involving the detection of relatively low concentrations of organic compounds and the use of acoustically thin films, changes in the complex shear modulus of the coatings contribute less than 5% of the total shift in the series resonant frequency, depending on the coating. In that case, the measured deltafs and, hence, the calculated approximate classification and selection of the coatings for operation in a complex solution of water/analyte molecules.  相似文献   

4.
A nongravimetric quartz crystal resonator for determination of boron was proposed. The key step is the preparation of a polymer that forms a complex with boron (from borate ion). The polymeric film is deposited on one face of an electrode-separated quartz crystal. The backbone of the polymer is poly(epichlorohydrin), which is modified to anchor N-methyl-D-glucamine. After reticulation and reduction, the film presents high stability and sensitivity to boron at pH 8.5. A carrier solution containing 50 mM EDTA ensures high conductivity and the elimination of several interfering metal ions. Boron is strongly retained by the film, and a positive shift of the oscillating frequency is proportional to its concentration. Boron is eluted with 1 mL of a 1 M mannitol solution. For a 0.160-mL sample loop and concentration up to 600 microM, the calibration sensitivity was 1.67 Hz/microM and the LOD was 2 microM. This limit could be lowered to 0.3 microM by using a 1.00-mL sample loop. In both cases, it was possible to detect 3 ng of boron. It was estimated that the nongravimetric sensor is at least 10 times more sensitive that a hypothetical gravimetric sensor.  相似文献   

5.
Surface acoustic wave (SAW) vapor sensors with polymeric sorbent layers can respond to vapors on the basis of mass loading and modulus decreases of the polymer film. The modulus changes are associated with volume changes that occur as vapor is sorbed by the film. A factor based on the fractional free volume of the vapor as a liquid has been incorporated into a model for the contribution of swelling-induced modulus changes to observed SAW vapor sensor responses. In this model, it is not the entire volume added to the film by the vapor that contributes to the modulus effect; it is the fractional free volume associated with the vapor molecules that causes the modulus to decrease in a manner that is equivalent to free volume changes from thermal expansion. The amplification of the SAW vapor sensor response due to modulus effects that are predicted by this model has been compared to amplification factors determined by comparing the responses of polymer-coated SAW vapor sensors with the responses of similarly coated thickness shear mode (TSM) vapor sensors, the latter being gravimetric. Results for six to eight vapors on each of two polymers, poly(isobutylene) and poly(epichlorohydrin), were examined. The model predicts amplification factors of the order of about 1.5-3, and vapor-dependent variations in the amplification factors are related to the specific volume of the vapor as a liquid. The fractional free volume factor provides a physically meaningful addition to the model and is consistent with conventional polymer physics treatments of the effects of temperature and plasticization on polymer modulus.  相似文献   

6.
7.
Quartz crystal resonator measurements can be used for polymer material characterization. The non-gravimetric regime of these resonators is exploited: the electrical response of polymer-coated quartz resonators depends on the polymer shear modulus. Previously reported methods employ an electrical admittance analysis together with difficult and time-consuming data fitting procedures to calculate the film shear modulus. This contribution presents a fast and accurate three-step method for the calculation of complex shear moduli of polymer films from quartz crystal resonator measurements. In the first step, the acoustic load impedance is calculated from the electrical admittance of the quartz crystal. The key point of this method is the application of a family of approximations for the calculation of the shear modulus from the acoustic load impedance in the second step. In the third step, the best approximation is improved further in an iterative procedure.  相似文献   

8.
Magnetoelastic sensor techniques have the unique characteristics of being able to wirelessly detect resonant frequency shifts of a magnetoelastic foil in response to differences in the foil mass. However, the mathematical expression that links the resonant frequency shift with the change in the mass of the magnetoelastic foil is rarely reported. Furthermore, this relationship is not easy to ascertain due to potential changes in the Young's modulus of the sensor upon a change in mass loading. In this paper, we have shown that adsorption of water vapor from the gas phase by magnetoelastic ribbons coated with a two layer porous thin film (SiO2/Pt-TiO2) induces large changes in the effective Young's modulus of the sensor. We also demonstrated that the change in Young's modulus upon mass loading can be eliminated from the relationship between mass loading and shifts in resonant frequency by using a technique that we refer to as the two different length sensor method (TDLS). This methodology permits the conversion of the magnetoelastic sensor into a microbalance. From data presented in this paper, we illustrate that the sensitivity for the same sensor can range between 214 Hz/mg for mass loadings of Au to 438 kHz/mg for acetone. In the case of water adsorption, frequency shifts varies from 20.0 kHz/mg when Deltam 相似文献   

9.
We describe a new strategy for interpreting frequency responses of thickness shear mode resonators loaded with spatially uniform viscoelastic films. This procedure leads to unambiguous extraction of the four parameters that characterize such a film: its thickness, density and shear modulus components (storage and loss moduli). The interpretational difficulty is that the experimental frequency response (impedance spectrum) can only provide two parameters; thus, the problem is underdetermined. Previous interpretations employed various approximations and assumptions for two (or more) film parameters to effectively reduce the problem to a two-parameter fit. Such approaches are clearly imperfect. Our new strategy splits the problem into two separate two-parameter sub-problems, each of which is solved by the measurement of two different experimental responses. The result is a unique fit to the data without the need to make approximations or assumptions for film parameters. First, in the acoustically thin regime, measured frequency shift and film charge are combined to provide a unique solution for film thickness and density; shear moduli components do not affect the response in this regime. Second, film density is carried forward directly, and the film thickness-charge relationship is extrapolated into the acoustically thick regime. Third, with film density and thickness held fixed, crystal impedance data in the acoustically thick regime provide unambiguous shear modulus components. The method is generalized to any other (nonelectrochemical) probe that provides film thickness data and validated using crystal impedance data for poly(3-methylthiophene) films exposed to propylene carbonate.  相似文献   

10.
A.J. Perry 《Thin solid films》1983,107(2):167-180
The scratch test for adhesion is reviewed as the only method currently available for testing thin, hard and well-adhering coatings such as TiC on steel or cemented carbide substrates. The critical load, mode of coating removal and acoustic signals are discussed. It is found that the combination of acoustic signal with microscopic observations can indicate whether failure occurs following a cohesive or an adhesive mode. The critical loads increase with increasing coating thickness in a manner which is a characteristic of the coating-substrate combination being studied. Critical loads are higher for harder tougher substrate materials; they also appear to depend on the elastic modulus and the coefficient of friction of the coating itself.  相似文献   

11.
用涂层压入仪测定薄膜与基体结合强度的探讨   总被引:1,自引:0,他引:1  
用新颖的能连续加载、卸载并配有声发射监测的涂层压入仪 ,对薄膜与基体的结合强度进行了探讨。实验结果表明 ,膜或膜 /基破坏的声发射信号各有特点 ,可区分压入过程中 (含卸载 )开裂和剥落及其对应的载荷值。压入法的临界载荷 pc 为加载过程中使膜发生初始剥落的外载 ,用涂层压入仪可精确测定。 pc 值对基体硬度和表面粗糙度的变化敏感。故用涂层压入仪可以实现用压入法考察膜 /基结合强度  相似文献   

12.
Apparent partition coefficients, K, for the sorption of toluene by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices are compared. The polymers examined were poly(isobutylene) (PIB), poly(epichlorohydrin) (PECH), poly(butadiene) (PBD), and poly(dimethylsiloxane) (PDMS). Independent data on partition coefficients for toluene in these polymers were compiled for comparison, and TSM sensor measurements were made using both oscillator and impedance analysis methods. K values from SAW sensor measurements were about twice those calculated from TSM sensor measurements when the polymers were PIB and PECH, and they were also at least twice the values of the independent partition coefficient data, which is interpreted as indicating that the SAW sensor responds to polymer modulus changes as well as to mass changes. K values from SAW and TSM measurements were in agreement with each other and with independent data when the polymer was PBD. Similarly, K values from the PDMS-coated SAW sensor were not much larger than values from independent measurements. These results indicate that modulus effects were not contributing to the SAW sensor responses in the cases of PBD and PDMS. However, K values from the PDMS-coated TSM device were larger than the values from the SAW device or independent measurements, and the impedance analyzer results indicated that this sensor using our sample of PDMS at the applied thickness did not behave as a simple mass sensor. Differences in behavior among the test polymers on SAW devices are interpreted in terms of their differing viscoelastic properties.  相似文献   

13.
Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.  相似文献   

14.
Gizeli E 《Analytical chemistry》2000,72(24):5967-5972
The sensitivity of the acoustic waveguide sensor to mass deposition in the presence of liquid was optimized as a function of the over-layer thickness. The waveguide geometry consisted of a 0.2-2.2-microm poly(methyl)methacrylate (PMMA) over-layer deposited on the surface of a shear acoustic wave device and supported a Love wave. The response of each polymer-coated waveguide was initially assessed by monitoring the frequency and insertion loss of the device in the presence of air. Sensitivity to viscous and mass loading was studied by recording the amplitude and phase of the wave during the application of water and of a supported lipid bilayer, respectively, on the device surface. Supported bilayers are a versatile system for mass calibration in the presence of liquid because they can be formed spontaneously on a hydrophilic surface, resulting in a layer of reproducible mass density. Results clearly showed that the response of both amplitude and phase depends on the over-layer thickness and increases with the thickness of the polymer layer. Phase was generally found to be more sensitive than amplitude to both viscous water and mass loading. The maximum sensitivity to vesicles deposition was measured at 250 cm2 g(-1) and was detected when 1.3 microm of PMMA was used as a waveguide layer. Results showed that the sensitivity of the acoustic wave sensor can be improved by simply increasing the thickness of the PMMA and that supported phospholipid layers can form an ideal system for both mass calibration and interfacial modification.  相似文献   

15.
Surface acoustic wave (SAW) sensors, which are sensitive to a variety of surface changes, have been widely used for chemical and physical sensing. The ability to control or compensate for the many surface forces has been instrumental in collecting valid data. In cases in which it is not possible to neglect certain effects, such as frequency drift with temperature, methods such as the "dual sensor" technique have been utilized. This paper describes a novel use of a dual sensor technique, using two sensor materials (quartz and GaAs) to separate out the contributions of mass and modulus of the frequency change during gas adsorption experiments. The large modulus change in the film calculated using this technique and predicted by the Gassmann equation provide a greater understanding of the challenges of SAW sensing.  相似文献   

16.
Theoretical and experimental investigations of thin-walled tube acoustic wave devices for gravimetric sensing applications are presented. Integrated sensor configurations have been demonstrated by employing a sol-gel processed thin piezoelectric lead zirconate titanate (PZT) film. This was coated coaxially on stainless steel tubes and interdigital transducers (IDT) fabricated as the transmitter and receiver on the curved tube surfaces. We have observed tube waves along both the axial and circumferential directions between 1 and 6.6 MHz. We have also analyzed the mass sensitivities of different modes propagating along the tubes and shown that high mass sensitivity can be achieved by keeping the tube wall thin  相似文献   

17.
A novel integrated acoustic gas and temperature sensor   总被引:3,自引:0,他引:3  
Acoustic temperature sensors have the advantages of a high-resolution frequency output and ease of integration with other acoustic sensors but require hermetic packaging to prevent sensor contamination. Surface-skimming bulk-wave (SSBW) devices have been found to be much less sensitive to surface contamination than other acoustic devices, and although their temperature response has been studied extensively, they have not been studied specifically as temperature sensors. Surface acoustic wave (SAW) based chemical sensors requiring temperature measurement or control are susceptible to temperature measurement error because the temperature cannot be measured in the same location as the chemical sensor. The objectives of this work were to examine the temperature characteristics and performance of a SSBW temperature sensor when integrated with a SAW condensation and humidity sensor in a novel design. The SSBW temperature sensor had over an order of magnitude less sensitivity to condensation and water uptake in certain polyimide films than an integrated SAW gas sensor indicating that this design is practical for sensing films in the delay path where film thickness is carefully considered.  相似文献   

18.
以锌漆薄膜与304不锈钢基底之间的界面裂纹为研究对象,采用声发射与显微镜实时检测技术与三点弯曲试验相结合的方法,测量了锌漆涂层的界面断裂韧性。同时将界面裂纹长度的有限元模拟结果和实验结果相比较,结果较为吻合。通过ABAQUS有限元模拟发现,界面断裂韧性与多种影响因素有关,界面裂纹扩展长度随薄膜厚度和外荷载的增加而增加,随界面断裂韧性和薄膜弹性模量的增大而减小,而泊松比对其影响不大。  相似文献   

19.
本文介绍声发射技术在判断划痕临界载荷以推定膜层与基材结合情况的研究结果。实验的试样是玻璃基材真空蒸镀铝膜、软钢上电镀镍层以及不同硬度的钢样上离子镀超硬氮化钛膜层。在脆性硬质基材上无论镀软膜或硬膜,划痕试验中一旦监听到声发射信号即表明基材与膜层结合失效,此时的划痕载荷即为临界载荷。塑性基材镀软膜层直到划痕到基材也无声发射信号出现。超硬膜层与钢基材的划痕试验中,声发射信号出现时载荷往往低于临界载荷。两者的差值决定于超硬膜的厚度和膜层与基材的硬度差。  相似文献   

20.
A new kind of polymer-based sensor is described in which the experimental parameters controlling selectivity and sensitivity are decoupled. The sensor is based on a surface acoustic wave (SAW) gravimetric transducer modified with a high-surface-area, nanoporous alumina coating. A very thin ( approximately 40 nm) poly(dimethylsiloxane) (PDMS) coating resides atop the porous alumina structure. In this configuration, the total surface area of the nanoporous alumina coating controls the sensitivity of the device, while the chemical properties of the PDMS membrane control selectivity. In conventional polymer-based sensors, the polymer plays the dual role of controlling both selectivity (via the chemical composition of the coating) and sensitivity (via the volume of the film). In this paper, we show that PDMS acts as a chemically selective gate that absorbs polar and nonpolar VOCs but does not transport these analytes to the underlying pore volume. In contrast, water vapor is absorbed by the PDMS to a very minor extent but is easily transported through it to the underlying walls of the porous substructure. Specifically, there was little difference in the mass-loading response arising from polar and nonpolar VOCs dosed onto planar and nanoporous SAW devices modified with PDMS. In contrast, SAW devices having nanoporous coatings responded up to 24 times more selectively to water than planar sensors modified identically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号