首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collision-induced dissociation (CID) and electron-induced dissociation (EID) have been investigated for a selection of small, singly charged organic molecules of pharmaceutical interest. Comparison of these techniques has shown that EID carried out on an FTICR MS and CID performed on a linear ion trap MS produce complementary data. In a study of 33 molecule-cations, EID generated over 300 product ions compared to 190 product ions by CID with an average of only 3 product ions per precursor ion common to both tandem MS techniques. Even multiple stages of CID failed to generate many of the product ions observed following EID. The charge carrying species is also shown to have a very significant effect on the degree of fragmentation and types of product ion resulting from EID. Protonated species behave much like the ammonium adduct with suggestion of a hydrogen atom from the charge carrying species strongly affecting the fragmentation mechanism. Sodium and potassium are retained by nearly every product ion formed from [M + Na](+) or [M + K](+) and provide information to complement the EID of [M + H](+) or [M + NH(4)](+). In summary, EID is proven to be a fitting partner to CID in the structural elucidation of small singly charged ions and by studying EID of a molecule-ion holding different charge carrying species, an even greater depth of detail can be obtained for functional groups commonly used in synthetic chemistry.  相似文献   

2.
A novel nebulizer (nDS-200) working at sample uptake rates of less than 500 nL min(-1) was developed for a sheathless interfacing of nanoHPLC (75-microm column i.d.) with ICPMS. It was based on a hollow fused-silica needle of which the tip (i.d. 10 microm, o.d. 20 microm) centered in a 254-microm-i.d. sapphire orifice. The nebulizer, equipped with a 3-cm(3) drain-free vaporization chamber, enabled a stable introduction into an ICP of aqueous mobile phases containing up to 95% acetonitrile at eluent flow rates between 50 and 450 nL min(-1). The low dead volume of the interface resulted in a peak width of 1.3 s (at half-height) and the entirely preserved chromatographic resolution. An example application of the coupling to the analysis of a tryptic digest of a SIP18 protein containing two to nine selenomethionine residues was described. The absolute detection limit was 25 fg (80Se), which allowed the detection of low-abundant selenopeptides at the femtomole level. In contrast to electrospray MS, the ICPMS detection in nanoHPLC is unaffected by the coeluting matrix and concomitant compounds and offers an elegant method for the detection and quantification of minor heteroelement-containing species prior to or in parallel with ESI MS analysis.  相似文献   

3.
Atmospheric pressure ionization in a miniature mass spectrometer   总被引:2,自引:0,他引:2  
A miniature cylindrical ion trap mass spectrometer featuring an atmospheric pressure interface allowing atmospheric pressure chemical ionization and electrospray ionization is described together with its analytical performance characteristics. The vacuum system, ion optics, mass analyzer, control electronics system, and detection system have all been designed and built in-house. The design is based upon a three-stage, differentially pumped vacuum system with the instrument capable of being interfaced to many types of atmospheric pressure ionization sources. Ions are transferred through home-built ion optics, and instrument control is achieved through custom-designed electronics and LabView control software. Corona discharge ionization and electrospray ionization sources are implemented and used to allow the analysis of both gaseous- and solution-phase samples during the characterization of the instrument. An upper mass/charge limit of approximately 450 Th with unit resolution was achieved using a 2.5-mm-internal radius cylindrical ion trap as the mass analyzer. The specificity of the instrument can be increased by employing the MS/MS capabilities of the ion trap and has been demonstrated for nitrobenzene. Limits of detection for the trace analysis in air of the chemical warfare agent simulant methyl salicylate (1.24 ppb) and for nitrobenzene (629 pptr) are achieved. The dynamic range of the instrument is currently limited to approximately 2 orders of magnitude by saturation of the detection electronics. Isolation and collision-induced dissociation efficiencies in MS/MS experiments both greater than 50% are reported. Electrospray/nanospray data are presented on solutions including 100 microM (D,L)-arginine, 10 microM (-)-ephedrine, and 10 microM lomefloxacin.  相似文献   

4.
The direct injection high efficiency nebulizer (DIHEN) was explored for the ultrasensitive determination of long-lived radionuclides ((226)Ra, (230)Th, (237)Np, (238)U, (239)Pu, and (241)Am) and for precise isotope analysis by inductively coupled plasma mass spectrometry (ICPMS). The DIHEN was used at low solution uptake rates (1-100 μL/min) without a spray chamber. Optimal sensitivity (e.g., (238)U, 230 MHz/ppm; (230)Th, 190 MHz/ppm; and (239)Pu, 184 MHz/ppm) was achieved at low nebulizer gas flow rates (0.16 L/min), high rf power (1450 W), and low solution uptake rates (100 μL/min). The optimum parameters varied slightly for the two DIHENs tested. The detection limits of long-lived radionuclides in aqueous solutions varied from 0.012 to 0.11 ng/L. The sensitivity of the DIHEN was improved by a factor of 3 to 5 compared with that of a microconcentric nebulizer (MicroMist used with a minicyclonic spray chamber at a solution uptake rate of 85 μL/min) and a factor of 1.5 to 4 compared with that of a conventional nebulizer (cross-flow used with a Scott type spray chamber at a solution uptake rate of 1 mL/min). The precision of the DIHEN ranged from 0.5 to 1.7% RSD (N = 3) for all measurements at the 10 ng/L concentration level (~3 pg sample size). The sensitivity decreased to 10 MHz/ppm at a solution uptake rate of 1 μL/min. The precision was about 5% RSD at a sample size of 30 fg for each long-lived radionuclide by the DIHEN-ICPMS method. The oxide to atom ratios were less than 0.05 (except ThO(+)/Th(+) ) and decreased under the optimum conditions in the following sequence: ThO(+)/Th(+) > UO(+)/U(+) > NpO(+)/Np(+) > PuO(+)/Pu(+) > AmO(+)/Am(+) > RaO(+)/Ra(+). Atomic and oxide ions were used as analyte ions for ultratrace and isotope analyses of long-lived radionuclides in environmental and radioactive waste samples. The analytical methods developed were applied to the determination of long-lived radionuclides and isotope ratio measurements in different radioactive waste and environmental samples using the DIHEN in combination with quadrupole ICPMS. For instance, the (240)Pu/(239)Pu isotope ratio was measured in a radioactive waste sample at a plutonium concentration of 12 ng/L. This demonstrates a main advantage of DIHEN-ICPMS compared with α-spectrometry, which cannot be used to selectively determine (239)Pu and (240)Pu because of similar α energies (5.244 and 5.255 MeV, respectively).  相似文献   

5.
Perdian DC  Lee YJ 《Analytical chemistry》2010,82(22):9393-9400
A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser. Using this approach, a high spatial resolution of 10 μm was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 μm, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MS(n) ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MS(n), ion trap, and orbitrap images were all acquired in a single data acquisition.  相似文献   

6.
We have developed a nebulizer, called a multimicrospray nebulizer (MMSN), that efficiently introduces analytes for plasma mass spectrometry and plasma emission spectrometry. In this nebulizer, both the sample solution and the nebulizer gas are divided into several streams to produce a multispray. That is, the MMSN is a nebulizer that contains several micronebulization units, each unit including an orifice for passing the nebulizer gas and a capillary for introducing a sample solution. The microspray from each micronebulization unit can be operated at a microliter per minute sample uptake rate to achieve high nebulization efficiency. The multimicrospray nebulizer is capable of introducing more analyte to the plasma compared with a single-orifice micronebulizer, which has a very low sample uptake rate. In this work, an MMSN with three orifices was found to be suitable for microwave-induced plasma mass spectrometry (MIP-MS). The sample uptake rate can be varied within a range of 5-250 microL/min. Therefore, the nebulizer is unique in its ability to deal with various sample volumes and provide high nebulization efficiency. The sensitivity for all elements obtained with the MMSN was higher than that obtained with a conventional concentric nebulizer (CCN), which is difficult to achieve with other types of microintroduction nebulizers. For most elements, the MIP-MS sensitivity was improved about 2-fold at a sample uptake rate of 150 microL/min, a much lower rate than that for the CCN (usually 0.5-1.5 mL/min). The sensitivity for arsenic was improved by a factor of 5. The relative standard deviation was found to be less than 2.0%.  相似文献   

7.
Zhou Y  Shen H  Yi T  Wen D  Pang N  Liao J  Liu H 《Analytical chemistry》2008,80(23):8920-8929
We designed and fabricated a novel microdevice to facilitate continuous adsorption phenomena for biological sample preparation. Using the device, we also developed an online, highly integrated, multifunctional strategy, with a promise of accepting a large volume of crude tissue extracts with the end point generation of a reliable MS identification within 20 min. Under an external electric field, charged membranes can adsorb multiple layers of proteins, which exceed the capacity limit of common resins or membranes. It enlarges sample loading and trapping efficiency, thus bypasses the tradeoff between sample capacity and downstream detection sensitivity. This integrated approach, formed by synergistic utilization among electric field, membrane, and fluidic handling at the microscale, reduces the overall complexity of crude samples in one step for direct MS analysis. The sample preparation goals, including enrichment, desalting, removal of noncharged contaminants, and initial fractionation, can be rapidly performed in a single device. The strategy facilitates reproducible MS quantification by circumventing traditional laborious and time-consuming sample preparation steps. In addition, MEPD extended the ion trap linear dynamic range from 2 to at least 4 orders of magnitude by eliminating ion suppression effect, enriching target analyte(s), and decreasing sample loss during integrated sample preparation.  相似文献   

8.
The capability of surfactant-coated mineral oxides to aid the solid-phase extraction (SPE) of amphiphiles based on the formation of mixed hemimicelles/admicelles was investigated. The approach is illustrated by studying the adsolubilization of benzalkonium homologue (C(12), C(14), C(16)) surfactants (BAS) on sodium dodecyl sulfate (SDS)-coated alumina. These oppositely charged surfactants form mixed aggregates on alumina causing retention of BAS by strong hydrophobic and ionic interactions. The recovery of BAS was found quantitative and independent of the alkyl chain length under a wide range of experimental conditions (3-200 mg of SDS/g of alumina; pH 2-11; sample flow rate 3-20 mL/min, and sample loading volume 0.025-1 L). Anionic and nonionic surfactants and electrolytes did not interfere to the levels found in raw sewage. Combination of BAS adsolubilization-based SPE with liquid chromatography/electrospray ionization in positive ion mode/ion trap mass spectrometry permitted the quantification of BAS with detection limits of 4 ng/L and their identification by isolation and subsequent fragmentation in the ion trap. The approach developed was applied to the determination of BAS in raw and treated sewage and river samples. The concentrations of benzalkonium surfactants found ranged between 0.1 and 49 microg/L.  相似文献   

9.
The dynamic range of protein expression in complex organisms coupled with the stochastic nature of discovery-driven tandem mass spectrometry (MS/MS) analysis continues to impede comprehensive sequence analysis and often provides only limited information for low-abundance proteins. High-performance fractionation of proteins or peptides prior to mass spectrometry analysis can mitigate these effects, though achieving an optimal combination of automation, reproducibility, separation peak capacity, and sample yield remains a significant challenge. Here we demonstrate an automated nanoflow 3-D liquid chromatography (LC)-MS/MS platform based on high-pH reversed phase (RP), strong anion exchange (SAX), and low-pH reversed phase (RP) separation stages for analysis of complex proteomes. We observed that RP-SAX-RP outperformed RP-RP for analysis of tryptic peptides derived from Escherichia coli and enabled identification of proteins present at a level of 50 copies per cell in Saccharomyces cerevisiae, corresponding to an estimated detection limit of 500 amol, from 40 μg of total lysate on a low-resolution 3-D ion trap mass spectrometer. A similar study performed on a LTQ-Orbitrap yielded over 4000 unique proteins from 5 μg of total yeast lysate analyzed in a single, 101 fraction RP-SAX-RP LC-MS/MS acquisition, providing an estimated detection limit of 65 amol for proteins expressed at 50 copies per cell.  相似文献   

10.
A new sample ionization technique, atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI), was coupled with a commercial ion trap mass spectrometer. This configuration enables the application-specific selection of external atmospheric ionization sources: the electrospray/APCI (commercially available) and AP MALDI (built in-house), which can be readily interchanged within minutes. The detection limit of the novel AP MALDI/ion trap is 10-50 fmol of analyte deposited on the target surface for a four-component mixture of peptides with 800-1700 molecular weight. The possibility of peptide structural analysis by MS/MS and MS3 experiments for AP MALDI-generated ions was demonstrated for the first time.  相似文献   

11.
A new hydride generator has been characterized for use with the acid-NaBH(4) hydride generation systems based on the insertion of a capillary tube into the sample introduction channel of a standard Meinhard nebulizer. The acidic sample and the tetrahydroborate solution are mixed at a merge point 1.5 cm from the end of the nebulizer orifice. Nebulization of the reaction solutions into a 0.7 mL tubular "spray chamber" follows a very short mixing time (less than 0.012 s) of the reagents. This approach permits 10?000 μg/mL Ni(2+) or Cr(3+) to be present in the sample solution without producing any interferences. Additionally, in the presence of Fe(3+) added as a "releasing agent", 5000 μg/mL Co(2+) or 160 μg/mL Cu(2+) can also be tolerated without interference. An 80 ± 2% generation efficiency is attained for the test element selenium. A detection limit of 6 μg/L (3σ(b)) is achieved with ICP-AES detection. Precision of replicate measurements at the 12 μg/L level varies from 5 to 12% relative standard deviation.  相似文献   

12.
A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 microm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5-120 microL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8-1.0 L/min when a 50 microm i.d. by 150 microm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24-95%) at the sample uptake rates of 5-100 microL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 microL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1-1.7% RSDs) are slightly better than those with the CFN (1.6-2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5-100 microL/min. The free aspiration rate of the HECFMN is 8.9 microL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.  相似文献   

13.
An electrospray ion chromatography-tandem mass spectrometry (IC-MS/MS) method has been developed for the analysis of bromate ions in water. This IC-MS/MS method improves the limit of detection of bromate ions by a factor of 10. The method consists of solid phase extraction with an ion exchange column and elution of the analyte with water/methanol ammonium sulfate eluent on-line with a negative ion electrospray mass spectrometry detection. SPE requires sample pretreatment to remove any major ions that displace bromate, consisting of eliminating SO(4)(2)(-), Cl(-), and HCO(3)(-) ions respectively with barium-form, silver-form, and acid (H(+)-form) exchange resins. The methanolic sulfate eluent permits IC-MS coupling via an electrospray interface. BrO(3)(-) was selected in the first quadrupole (Q1) at two m/z values, 127 and 129, according to the isotope contributions of (79)Br and (81)Br. After fragmentation in the collision cell (second quadrupole, Q2), the third quadrupole (Q3) analyzes the product ions as (M - O)(-), (M - 2O)(-), and (M - 3O)(-). Among the six recordable transitions, four were selected, the other two yielding high background. A lowered resolution raised sensitivity by a factor of up to 3. The limit of quantitation of this method was 0.1 μg/L.  相似文献   

14.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion trap and time-of-flight MS. The small compensation voltage (CV) window for the transmission of singly charged ions demonstrates the ability of ultra-FAIMS-MS to generate pseudo-peptide mass fingerprints that may be used to simplify spectra and identify proteins by database searching. Multiply charged ions required a higher CV for transmission, and ions with different amino acid sequences may be separated on the basis of their differential ion mobility. A partial separation of conformers was also observed for the doubly charged ion of bradykinin. Selection on the basis of charge state and differential mobility prior to tandem mass spectrometry facilitates peptide and protein identification by allowing precursor ions to be identified with greater selectivity, thus reducing spectral complexity and enhancing MS detection.  相似文献   

15.
We describe the data-dependent analysis of protein phosphorylation using rapid-acquisition nano-LC-linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry (nano-LC-FTMS). The accurate m/z values of singly, doubly, and triply charged species calculated from the theoretical protonated masses of peptides phosphorylated at all Ser, Thr, or Tyr residues of the human checkpoint 2 (Chk2) protein kinase were used for selected ion extraction and chromatographic analysis. Using a kinase-inactive Chk2 mutant as a control, accurate mass measurements from FTMS and collision-induced dissociation spectra, 11 novel Chk2 autophosphorylation sites were assigned. Additionally, the presence of additional Chk2 phosphorylation sites in two unique peptides was deduced from accurate mass measurements. Selected ion chromatograms of all Chk2 phosphopeptides gave single peaks except in three cases in which two closely eluting species were observed. These pairs of phosphopeptides were determined to be positional isomers from MS/MS analysis. In this study, it was also found that ions due to the neutral loss of phosphoric acid from the parent peptide ion were not prominent in 18 of 36 MS/MS spectra of O-linked Chk2 phosphopeptides. Thus, accurate mass-driven analysis and rapid parallel MS/MS acquisition is a useful method for the discovery of new phosphorylation sites that is independent of the signature losses from phosphorylated amino acid residues.  相似文献   

16.
Batt AL  Aga DS 《Analytical chemistry》2005,77(9):2940-2947
Solid-phase extraction (SPE) and liquid chromatography in combination with ion trap mass spectrometry (LC/MS/MS) conditions were optimized for the simultaneous analysis of 13 antibiotics belonging to multiple classes and caffeine in 3 different water matrixes. The single-cartridge extraction step was developed using a reversed-phase cartridge, resulting in recoveries for the 14 compounds ranging from 71 to 119% with relative standard deviations of 16% or lower. The analytes were separated in one chromatographic run, and the SPE-LC/MS/MS detection limits ranged from 0.03 to 0.19 microg/L. The SPE procedure was validated in groundwater, surface water, and wastewater. The analysis of samples from each of the three water matrixes revealed clindamycin (1.1 microg/L) in surface water and multiple antibiotics in wastewater (0.10-1.3 microg/L). The use of identification points to unambiguously assign the identity of antibiotics in various water matrixes was applied to an ion trap data-dependent scanning method, which simultaneously collects full scan and full scan MS/MS data for the unequivocal identification of target analytes.  相似文献   

17.
Atmospheric pressure chemical ionization was compared with electrospray ionization and atmospheric pressure photoionization (APPI) as an interface of high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) for the determination of cyclosporin A (CsA) in biological fluids in support of in vivo pharmacodynamic studies. These ion sources were investigated in terms of their suitability and sensitivity for the detection of CsA. The effects of the eluent flow rate and composition as well as the nebulizer temperatures on the photoionization efficiency of CsA in the positive ion mode under normal-phase HPLC conditions were explored. The ionization mechanism in the APPI environment with and without the use of the dopant was studied using two test compounds and a few solvent systems employed for normal-phase chromatography. The test compounds were observed to be ionized mainly by proton transfer with the self-protonated solvent molecules produced through photon irradiation. Furthermore, ion suppression due to sample matrix interference in the normal-phase HPLC-APPI-MS/MS system was monitored by the postcolumn infusion technique. The applicability of these proposed HPLC-API-MS/MS approaches for the determination of CsA at low nanogram per milliliter levels in rat plasma was examined. These proposed methods were then compared with respect to specificity, linearity, detection limit, and accuracy.  相似文献   

18.
A matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer of new design is described. The instrument is based on a commercial Finnegan LCQ ion trap mass spectrometer to which we have added a MALDI ion source that incorporates a sample stage constructed from a compact disk and a new ion transmission interface. The ion interface contains a quadrupole ion guide installed between the skimmer and the octapoles of the original instrument configuration, allowing for operation in both MALDI and electrospray ionization modes. The instrument has femtomole sensitivity for peptides and is capable of collecting a large number of MALDI MS and MALDI MS/MS spectra within a short period of time. The MALDI source produces reproducible signals for 10(4)-10(5) laser pulses, enabling us to collect MS/MS spectra from all the discernible singly charged ions detected in a MS peptide map. We describe the different modes of the instrument operation and algorithms for data processing as applied to challenging protein identification problems.  相似文献   

19.
Chiral recognition of d- and l-amino acids is achieved in the gas phase on the basis of the kinetics of competitive fragmentations of trimeric Cu(II)-bound complexes. The singly charged copper(II)-amino acid trimeric cluster ions [A(2)BCu(II) - H](+) dissociate to form [A(2)Cu(II) - H](+) and [ABCu(II) - H](+) upon collision-induced dissociation (CID) in a quadrupole ion trap. The abundance ratios of these fragments depend strongly on the stereochemistry of the ligands in the [A(2)BCu(II) - H](+) complex ion. The kinetic method was used to calculate relative Cu ion affinities (ΔCu(II)') for homo- and heterochiral copper(II)-bound dimeric cluster ions as the indicator of chiral discrimination. Six amino acids of four different types showed chiral distinctions which ranged from 0 to 6.5 kJ/mol in terms of values of ΔCu(II)' with abundance ratios, referenced to the other enantiomer, ranging from 1 to 9.2. Amino acids with aromatic substituents displayed the largest chiral distinction, which correlates well with reported chromatographic results. The methodology presented here provides a sensitive means to study enantiomers by mass spectrometry, and initial results show that it is applicable to measurement of enantiomeric excess.  相似文献   

20.
Collisional activation of the intact MS2 viral capsid protein with subsequent ion/ion reactions has been used to identify the presence of this virus in E. coli lysates. Tandem ion trap mass spectrometry experiments on the +7, +8, and +9 charge states, followed by ion/ion reactions, provided the necessary sequence tag information (and molecular weight data) needed for protein identification via database searching. The most directly informative structural information is obtained from those charge states that produce a series of product ions arising from fragmentation at adjacent residues. The formation of these product ions via dissociation at adjacent amino acid residues depends greatly on the charge state of the parent ion. Database searching of the charge-state-specific sequence tags was performed by two different search engines: the ProteinInfo program from the Protein information Retrieval On-line World Wide Web Lab or PROWL and the TagIdent program from the ExPASy molecular biology server. These search engines were used in conjunction with the sequence tag information generated via collisional activation of the intact viral coat protein. These programs were used to evaluate the feasibility of generating sequence tags from collisional activation of intact multiply charged protein ions in a quadrupole ion trap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号