首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tungsten substituted samples of compositions SrBi2(WxTa1−x)2O9 (x = 0.0, 0.025, 0.050, 0.075, 0.10 and 0.20) were synthesized by solid-state reaction method and studied for their microstructural, electrical conductivity, ferroelectric and piezoelectric properties. The X-ray diffractograms confirm the formation of single phase layered perovskite structure in the samples with x up to 0.05. The temperature dependence of dc conductivity vis-à-vis tungsten content shows a decrease in conductivity, which is attributed to the suppression of oxygen vacancies. The ferroelectric and piezoelectric studies of the W-substituted SBT ceramics show that the remanent polarization and d33 values increases with increasing concentration of tungsten up to x ≤ 0.05. Such compositions with low conductivity and high Pr values should be excellent materials for highly stable ferroelectric memory devices.  相似文献   

2.
Europium substituted samples of compositions Sr1 − xEuxBi2Ta2O9 were synthesized by solid-state reaction method. The prepared samples were characterized for their structural and electrical properties. X-ray analysis confirms the formation of the single-phase layered perovskite structure. The microstructural studies reveal that the average grain size increases with increase in Eu content. An increase in remanent polarization and d33 values with increasing concentration of europium has been observed. The maximum 2Pr ~ 14 μC/cm2 is observed in the sample with x = 0.20. The observed results have been discussed in terms of contribution from the cation vacancies introduced into the lattice structure due to donor doping.  相似文献   

3.
Chemically homogeneous SrBi2Ta2O9 (SBT) sol was synthesized using ethoxy tantalum, strontium acetate, and bismuth subnitrate as starting materials, methoxyethylene as a solvent and acetic acid (HOAc) as a catalyst. Single-phased perovskite phase SBT ferroelectric ultrafine powder was obtained after the dried gel was treated at 350°C for 30 min and calcined at 800°C for 1 h. FT-IR, XRD, TEM and TG-DTA were employed to investigate the transformation processes of sol to gel and gel to ultrafine SBT powder. Acetic acid not only acts as an acid catalyst, but also changes the alkoxide precursor as a ligand at a molecular level. Bidentate acetates replace OR groups and are directly bounded to the tantalum, leading to the formation of Ta (OR)x(OAc)5−x. The perovskite SBT phase formed via intermediate phase Bi3TaO7 and a Bi-deficient pyrocholore phase.  相似文献   

4.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

5.
Pure ZnNb2O6 powder was successfully prepared by the molten salt synthesis method using Nb2O5 and ZnO as raw materials and a mixture of NaCl and KCl as the solvent. The phase form and morphology of the prepared powder were characterized by X-ray diffraction and scanning electron microscopy. The effect of reacting temperature on phase formation was investigated. The results indicated that the single phase ZnNb2O6 powder can be obtained by the molten salt synthesis method at 600 °C, and the SEM photographs show that the grains of the powder are rod-like particles.  相似文献   

6.
Infrared optical properties of SrBi2−xNdxNb2O9 (SBNN) ceramics with different Nd compositions (from 0 to 0.2) have been investigated by near-normal incident reflectance technique. The experimental spectra in the wavenumbers range of 350-1500 cm−1 were analyzed using the Lorentz oscillator model for five infrared-active phonon mode observed. It is found that the frequencies of the NbO6 tilting and symmetric stretching modes linearly decrease with the Nd composition due to the octahedra distortion. The high-frequency dielectric constant varies in the range from 4.55 ± 0.04 to 4.80 ± 0.04. Owing to the contribution from the stronger electronic transitions, the real part of dielectric function Re(?) is estimated to about 4.0 in the high-frequency transparent region.  相似文献   

7.
Porous Al2O3/ZrO2 ceramics with porosity varying from 6% to 50% were fabricated by gelcasting using polystyrene (PS) as pore-forming agent. The effects of sintering temperature on porosity, strength as well as pore size were investigated. The flexural strength of these porous ceramics at room temperature significantly decreases as the porosity increases. Thermal shock resistance of these ceramics was improved by increasing the porosity. Both the critical difference temperature (ΔTc) and residual strength of high porosity ceramics were higher than those of low porosity ceramics. These improvements can be attributed to the pores in the specimens which relax the thermal shock stress and arrest the propagation of microcracks effectively, which is confirmed by XRD analysis of specimens which encountered different thermal shock temperature difference.  相似文献   

8.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

9.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

10.
Ceramic powders of (Ba,Pb)Pb(Mg1/3Ta2/3)O3 were prepared via a B-site precursor route. Crystal symmetries and lattice parameters were determined. Monophasic perovskite was developed after the two-step reaction process, in which the lattice parameters showed linear changes in the entire composition range. Dielectric responses of the ceramics with compositional and frequency changes were investigated. The results were also compared with the (Ba,Pb)(Zn1/3Ta2/3)O3 data.  相似文献   

11.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications.  相似文献   

12.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

13.
The effects of CuO-V2O5 addition on the sintering temperature and microwave dielectric properties of ZnO-Nb2O5-TiO2-SnO2 were investigated. The CuO-V2O5 addition lowered the sintering temperature of ZnO-Nb2O5-TiO2-SnO2 ceramics effectively from 1150 to 860 °C due to the liquid-phase effect of Cu2V2O7 and Cu3(VO4)2, as observed by XRD. The microwave dielectric properties were found to strongly correlate with the sintering temperature and the amount of CuO-V2O5 addition. The maximum Qf values decreased with increasing CuO-V2O5 content, due to the formation of the second phase, Cu3(VO4)2 and CuNbO3. Zero τf value can be obtained by properly adjusting the sintering temperature. At 860 °C, ZnO-Nb2O5-TiO2-SnO2 ceramics with 1.5 wt.% CuO-V2O5 gave excellent microwave dielectric properties: ?r = 42.3, Qf = 9000 GHz and τf = 8 ppm/°C.  相似文献   

14.
Spherical monodispersed, submicron-sized Y2O3 powder was prepared via a homogeneous precipitation method using nitrate and urea as raw materials. The structure, phase evolution and morphology of Y2O3 precursor and the calcined powder were studied by FTIR, TG/DTA, XRD and SEM methods. The sphere size of the precursor was about 250 nm and that of Y2O3 powder calcined at 800 °C for 2 h was about 200-210 nm. With the spherical Y2O3 powder and a commercial Al2O3 ultrafine powder, high transparent YAG ceramics was fabricated by vacuum sintering at 1780 °C for 6 h through a solid-state reaction method. The in-line transmittances of the as-fabricated YAG ceramics at the wavelength of 1064 nm and 400 nm were 82.8% and 79.5%, respectively, which were much higher than that of the YAG ceramics with a commercial Y2O3 powder and a commercial Al2O3 ultrafine powder directly. The superior properties are attributed to the good morphology, dispersibility and uniform grain size of the as-prepared spherical Y2O3 powder, which matches that of the commercial Al2O3 powder.  相似文献   

15.
This paper deals on a study realized in order to elaborate dense ceramic of Bi4La2O9 oxide conductor. A wet method in nitric media, usually favorable to obtain low grain size, did not allow to isolate the stable phases. Material with particle low size has been obtained by attrition treatment after conventional solid state powder synthesis. The decrease of particle size (≅4 times), evidenced by X-ray diffraction and SEM, influences the reversibility of transitions between monoclinic ? and rhombohedral β2 varieties on powder, as well as ceramics, leading to an improvement of the conductivity level of these ones after a thermal cycle.  相似文献   

16.
The effect of spark plasma sintering (SPS) on the densification of TiO2 ceramics was investigated using a nanocrystalline TiO2 powder. A fully-dense TiO2 specimen with an average grain size of ∼200 nm was obtained by SPS at 700 °C for 1 h. In contrast, a theoretical density specimen could only be obtained using conventional sintering above 900 °C for 1 h with an average grain size of 1-2 μm.  相似文献   

17.
Ceramics samples of tungsten trioxide doped with lithium carbonate from 0.5 to 5 mol% were prepared by conventional electroceramic technique. The current-voltage characteristics of these ceramics were measured under various ambient temperatures. All of the I-V curves showed non-ohmic electrical properties with obvious negative-resistance characteristic at room temperature. It is found that there exists a direct correlation between the negative-resistance phenomenon in the I-V curves and the electrical history of these samples. The suitability of some models regarding the negative-resistance characteristics is discussed. X-ray diffraction (XRD) revealed coexistence of two phases of tungsten trioxide, which depends on the amount of lithium. Scanning electron microscope (SEM) showed great differences for both grain shape and size between the Li-doped and undoped WO3 ceramics, and this indicates that Li2CO3 doped into WO3 influences strongly the growing of WO3 during sintering process.  相似文献   

18.
The ceramics with 0.90Pb(Zr0.50Ti0.50)O3-0.07Pb(Mn1/3Nb2/3)O3-0.03Pb(Ni1/2W1/2)O3 were prepared by adding Cr2O3. The effects of Cr2O3 doping on the phase structure, the microstructure and the electrical properties of ceramics were investigated. Meanwhile, the temperature stabilities of the resonant frequency (fr) and the electromechanical coupling factor (Kp) were studied. The results showed that the better temperature stability could be obtained at x = 0.2 wt.% when the calcining temperature was 800 °C and the sintering temperature was 1150 °C. The parameters were Δfr/fr25 °C = −0.17% and ΔKp/Kp25 °C = −1.39%. Moreover, the optimized electrical properties were also achieved, which were KP = 0.54, Qm = 1730, d33 = 330 pC/N, ?r = 2078 and tan δ = 0.0052. The optimized properties make the ceramics with this composition to be a good candidate for high power piezoelectric transformers applications.  相似文献   

19.
Piezoelectric Pb(ZrxTi1−x)O3 (PZT) ceramics with small amount (0.5-2.0 wt.%) of In2O3 are prepared by conventional sintering method. Based on X-ray diffraction analysis, the tetragonality of PZT matrix decreases with In2O3 content, indicating that In2O3 diffuses into PZT matrix. The microstructure of PZT matrix is significantly refined by doping small amounts of In2O3. The grain size reduction and the matrix grain boundary reinforcement are the probable mechanism responsible for the high strength and hardness in the PZT/In2O3 materials. The enhancement in Young’s modulus is attributed to In3+ substitution. The decreased tetragonality with In2O3 addition results in less crack energy absorption by domain switching and, hence, causes the small reduction in fracture toughness.  相似文献   

20.
The polycrystalline sample of KBa2V5O15 ceramics was prepared by a mixed oxide method at low temperature (i.e., at 560 °C). The formation of the compound was confirmed using an X-ray diffraction technique at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound as a function of temperature at different frequencies suggest that the compound has a dielectric anomaly of ferroelectric to paraelectric type at 323 °C, and exhibits diffuse phase transition. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of both grain (>103 Hz) and the grain boundary (<103 Hz) effects in the material. Studies of electrical conductivity over a wide temperature range suggest that the compound exhibits the negative temperature coefficient of resistance behavior. The ac conductivity spectrum was found to obey Jonscher's universal power law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号