首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to miniaturize piezoresistive barometric pressure sensors, a new flip-chip packaging technology has been developed. The thermal expansions of chip and package are different. So in a standard flip-chip package the strong mechanical coupling by the solder bumps would lead to stress in the sensor chip, which is unacceptable for piezoresistive pressure sensors. To solve this problem, in the new packaging technology the chip is flip-chip bonded on compliant springs to decouple chip and package. As the first step of the packaging process an under bump metallization (UBM) is patterned on the sensor wafer. Then solder bumps are printed. After wafer-dicing the chips are flip-chip bonded on copper springs within a ceramic cavity housing. Due to the compliance of the springs, packaging stress is induced into the sensor chip. As sources of residual stress the UBM and the solder bumps on the sensor chip were identified. Different coefficients of thermal expansion of the silicon chip, the UBM and the solder lead to plastic straining of the aluminum metallization between UBM and chip. As a consequence the measurement accuracy is limited by a temperature hysteresis. The influence of the chip geometry, e.g., the thickness of the chip or the depth of the cavity, on the hysteresis was investigated by simulation and measurements. As a result of this investigation a sensor chip was designed with very low residual stress and a temperature hysteresis which is only slightly larger than the noise of the sensor.  相似文献   

2.
Demonstrates the feasibility of integrating fragile micromachined chips into a complex three-dimensional (3-D) multichip module (MCM) microsystem for a biomedical application. The system is based on the vertical integration of the different parts: micropumps and valves, a multisensor chip for on-line control of the system and a signal-processing chip. In this paper, packaging of the microsystem is studied in order to minimize the induced stress that can affect the integrity of the different micromachined parts of the system. Standard commercially available components and materials were used so as to minimize costs for the case of high volume packaging. For testing the approach, a multisensor chip which includes thin silicon membrane-based devices has been used as the main test structure to compare different packaging materials. In addition, for the fabrication of such a sensor chip in an efficient mode, technological modules needed to fabricate sensors on complementary metal-oxide-semiconductor (CMOS) wafers are discussed. The definition of standardized "add-on" sensor modules to the CMOS process of a foundry is intended to limit the development cost of smart sensors  相似文献   

3.
利用MEMS(微机电系统)工艺中的扩散,刻蚀,氧化,金属溅射等工艺制备出SOI高温压力敏感芯片,并通过静电键合工艺在SOI芯片背面和玻璃间形成真空参考腔,最后通过引线键合工艺完成敏感芯片与外部设备的电气连接.对封装的敏感芯片进行高温下的加压测试,高温压力测试结果表明,在21℃(常温)至300℃的温度范围内,传感器敏感芯片可在压力量程内正常工作,传感器敏感芯片的线性度从0.9 985下降为0.9 865,控制在较小的范围内.高温压力下的性能测试结果表明,该压力传感器可用于300℃恶劣环境下的压力测量,其高温下的稳定性能为压阻式高温压力芯片的研制提供了参考.  相似文献   

4.
本文给出了一个采用倒封装技术实现的硅热风速传感器的封装结构.该传感器使用铜柱凸点技术,倒装于薄层陶瓷上.利用陶瓷的导热性能实现传感器芯片的加热元件和环境风速的热交换,同时陶瓷又起保护和支撑传感器芯片的作用.测试结果表明,封装后的传感器具有良好的性能.  相似文献   

5.
在线微量水分测定系统的设计   总被引:1,自引:0,他引:1  
氧化铝湿度传感器是一种新型的测量微量水分的传感器 ,在物料干燥和环境湿度监测中都具有重要的应用。介绍了这种传感器的工作原理 ,讨论了基于 80 31单片机的微量水分在线测定仪的结构 ,设计了传感器信号调理电路及 80 31单片机系统 ,给出了软件流程图。本仪器对干燥过程实现在线实时监测与控制具有重要意义 ,且已用于绝缘材料干燥实验中 ,达到了预期效果。  相似文献   

6.
提出了一种基于牺牲层技术的高过载压力传感器芯片。这种传感器充分利用了多晶硅机械特性和多晶硅纳米膜的压阻特性优势,提高了传感器满量程输出和过载能力。利用有限元方法设计了仿真模型,通过对弹性膜片应力分布的静态分析和非线性接触分析,给出了提高这种压力传感器满量程输出和过载能力的设计方法。并试制了量程为2.5 MPa的传感器芯片样品。测试结果表明样品的过载压力超过7倍量程,5 V供电条件下,满量程输出达到362 m V。  相似文献   

7.
For the purposes of pressure measurement at high temperature in oil drilling industry as well as in other industrial measurement and control systems, the strain gauge chip of piezoresistive pressure sensor is designed based on separation by implanted oxygen (SIMOX) SOI (silicon on insulator) technology, and then fabricated in the micro-machining work bay. Some kinds of sensor mechanical structures are designed for different customers and conditions. The thermal coefficients of expansion (TCE) mismatches between different materials within the high-pressure sensor system are investigated. The sensor is fabricated successfully by using high temperature packaging process. The temperature coefficient of sensitivity (TCS) and temperature coefficient of offset (TCO) compensation circuitry is demonstrated. Based on experimental data, the sensor is tested with high accuracy and good stability.  相似文献   

8.
容栅旋转编码器原理及应用   总被引:1,自引:0,他引:1  
以旋转容栅编码器为例,简述容栅传感器的测量原理及其结构,分析容栅自身以及容栅芯片的特点,通过机械机构设计和容栅编码器后续电路设计,提高其工作可靠性,并应用于实际工程中.  相似文献   

9.
A backside-etched silicon chip with a polysilicon diaphragm flip-chip attached on a printed wiring board and globally bumped on a FR4 printed circuit board was investigated through a finite element analysis for determining three key parameters of flip-chip chip size packaging, namely, the size of solder bump, and the thickness of the printed wiring board with/without U8437-3 underfill. Four kinds of thermal-induced stresses and deformations in the diaphragm, solder bump, and printed wiring board were evaluated for the parametric study. As the simulation results show, the thermal-induced stresses in the diaphragm and solder bump can be reduced effectively if the printed wiring board is thinner. However, the printed wiring board is still required to be sufficiently thick to prevent warping. In addition, the underfill material also can reduce the induced stress occurring at the interface between the solder joint and the chip and improve reliability. In general, the parametric study can provide a basis for the flip chip package of a MEMS device with a diaphragm, such as a MEMS microphone, MEMS pressure sensor, etc.  相似文献   

10.
对一种新型双悬臂梁高gn 值MEMS加速度传感器进行有限元模拟。采用双悬臂梁传感芯片的一种实际封装结构 ,进行频域分析和时域分析 ,讨论封合传感器芯片和封装基体的封合材料对其输出信号的影响。频域分析表明 ,封合材料的杨氏模量对封装后加速度传感器整体的振动模态有一定影响 ,封合胶的杨氏模量很小时 ,会致使加速度传感器的信号失真 ,模拟表明可选用杨氏模量足够高的环氧树脂类作高gn 值传感器的封合材料。时域分析静态模拟表明 ,封合材料的杨氏模量 ,对最大等效应力和沿加载垂直方向的正应力最大最小值基本无影响。时域分析动态模拟表明 ,随着封合材料杨氏模量的提高 ,动态模拟输出的悬臂梁末端节点位移的波形和其经数字滤波后输出的信号变好 ,封合材料的杨氏模量不影响输出信号的频率和均值 ,在加速度脉冲幅值输入信号变化时 ,悬臂梁末端位移平均值输出信号与输入有良好的线性关系。  相似文献   

11.
对一种先进的双悬臂梁高量程MEMS加速度计的单芯片封装工艺进行了失效机理分析。手工粘贴芯片盖板可靠性不高,加速度计失效是由于胶粘剂(粘贴胶或灌封胶 )从芯片盖板和芯片的间隙流淌进入悬臂梁的过载保护间隙,阻碍了悬臂梁的摆动。高量程加速度计采用单芯片封装方法时,存在芯片正面和背面保护的可靠性问题,更好的封装方法是采用圆片级封装。黑胶不适宜用作加速度计的贴片胶,至少使用聚酰亚胺膜作背面保护时如此。  相似文献   

12.
This paper describes the design and characterization of a micro-electro-mechanical systems tri-axial force sensor that can be mounted on the tip of an 1-French guidewire (0.014″). Piezoresistive silicon nanowires (SiNWs) are embedded into four beams forming a cross-shape to allow the detection of forces in three axes. The electrical resistance changes in the four SiNWs are used to decode arbitrary force applied onto the force sensor. Finite element analysis was used in the structural design of the force sensor. Robustness of the force sensor is improved due to the novel design of incorporating a mechanical stopper on the tip of the stylus. Flip chip bonding, using gold stud bumps, is used to mount the force sensor on a substrate for characterization and to simplify the assembly process. The sensor is robust enough to withstand normal forces higher than 20 gf. The proposed sensor can be used for new medical applications in vascular interventions and robotic surgeries.  相似文献   

13.
Understanding the mechanism of how biological reactions produce mechanical loadings is fundamental to biomedical developments. A CMOS biosensor chip is developed to measure in situ the induced surface stress change by DNA hybridization. For 20-mer thiol-modified single stranded DNA (ssDNA), the mechanism of ssDNA attached to gold surface via a sulfur–gold linkage can be investigated by using the Langmuir adsorption model. Experimental results indicate that the immobilization response is less than 1 s, the total number of ssDNA molecules on the cantilever is about 3 × 1011, and the induced surface stress is 0.15 N/m. The surface stress sensitivity of the sensor is about 3.5 × 10−5 m/N. The estimated adsorption rate of the ssDNA is 0.005 s−1. The biosensor is capable of discriminating complimentary molecular targets and thus may provide a powerful platform for high throughput real-time analysis of DNA.  相似文献   

14.
A novel CMOS integrated Micro-Electro-Mechanical capacitive pressure sensor in SiGe MEMS (Silicon Germanium Micro-Electro-Mechanical System) process is designed and analyzed. Excellent mechanical stress–strain behavior of Polycrystalline Silicon Germanium (Poly-SiGe) is utilized effectively in this MEMS design to characterize the structure of the pressure sensor diaphragm element. The edge clamped elliptic structured diaphragm uses semi-major axis clamp springs to yield high sensitivity, wide dynamic range and good linearity. Integrated on-chip signal conditioning circuit in 0.18 μm TSMC CMOS process (forming the host substrate base for the SiGe MEMS) is also implemented to achieve a high overall gain of 102 dB for the MEMS sensor. A high sensitivity of 0.17 mV/hPa (@1.4 V supply), with a non linearity of around 1 % is achieved for the full scale range of applied pressure load. The diaphragm with a wide dynamic range of 100–1,000 hPa stacked on top of the CMOS circuitry, effectively reduces the combined sensor and conditioning implementation area of the intelligent sensor chip.  相似文献   

15.
设计、研制了集成有微泵、微沟道、微流量传感器、温度传感器的微流体测控芯片.采用有限元软件ANSYS模拟分析了将其作为冷却芯片时微沟道的散热作用,分析确定了芯片上各元件的结构.该集成芯片为硅-玻璃结构,在硅片上,利用ICP法刻蚀无阀微泵泵体和微沟道;在7740玻璃片上,以溅射、剥离法制作微流量和温度传感器;图形精确对准后硅/玻璃以静电键合方法封接.无阀微泵采用压电元件驱动.测试结果表明:集成芯片具有冷却功能,循环水的流速最大可达25.4mm/s.  相似文献   

16.
为精确、方便地测量强夯机夯击土体的夯实度,设计了一种无线夯实度传感器。通过分析强夯机夯锤-土体力学系统模型,得出夯实度与冲击加速度之间的关系。据此开展了无线夯实度传感器的软硬件设计。该传感器主要包含的功能模块有:加速度信号采集、加速度分析处理和无线发送数据。以STM32为处理核心,加速度芯片与STM32之间采用I2C总线,无线通信模块KB3071实现将计算处理后的数据无线传输至远程监控端。将设计的传感器应用到实验测试中,实验结果证明了夯实度与冲击加速度之间的关系,其检测结果可以用于分析判断土体的夯实情况。  相似文献   

17.
A compact package for integrated silicon thermal gas flow meters   总被引:1,自引:1,他引:0  
An original packaging method suitable for integrated thermal mass flow sensors is presented. The method is based on a polymethyl-methacrylate (PMMA) adapter, used to convey the fluid flow to the chip areas where the sensing structures are located. Sealing of the adapter was obtained by heating the chip itself to the PMMA glass transition temperature, in order to soften the adapter front surface and improve adhesion. The proposed approach was applied to the packaging of thermal flow meters obtained by post-processing standard integrated circuits. The resulting compact devices have been characterized by measuring the response to a nitrogen flow. Fabrication and testing of a very compact flow sensor is described.  相似文献   

18.
This study presents a novel plastic package for piezoresistive pressure sensors. A photoresist dam-ring patterned using the lithographic process is spin-coated on a piezoresistive pressure sensor to define a sensing channel in the pressure sensor package. Fluid epoxy molding encapsulates the pressure sensor and exposes the sensing channel during a high-temperature molding process at 165 °C. Experimental observations reveal that the silicon membrane of the pressure sensor is completely free of epoxy molding compound (EMC) contamination after the transfer molding process. The effectiveness of the dam-ring in shielding the silicon membrane of the pressure sensor during the molding process was confirmed. The packaged pressure sensor exerts a thermo-mechanical stress on the silicon membrane of the pressure sensor, resulting in an undesired output voltage drift. However, employing a package design with a large sensing channel opening can reduce the effect of package-induced stress. The proposed packaging scheme was a small package volume and surface-mount device (SMD) compatible features, making it suitable for portable commercial devices.  相似文献   

19.
Due to the piezoresistive and the piezo-Hall effect in semiconductor materials, Hall sensors show a strong temperature dependency and also a drift when subjected to temperature cycles Manic et al. (2000). Four factors mainly influence the mechanical stress in the sensitive layer. These are the geometry of the device, the differences of the coefficients of thermal expansion of the package materials, the temperature-dependent material properties and the time-dependent, viscous material properties. The objective of this investigation was to determine the mechanical stress in a moulded Hall sensor during the packaging process by finite-element simulation in comparison to experimental methods. It is shown that after each process-step the mechanical stress in the sensitive layer changes over time depending on the absolute value and the rate of the temperature change. Measurements of the inverse bending radius of glued and moulded chips show good agreement to the simulations.  相似文献   

20.

Due to the piezoresistive and the piezo-Hall effect in semiconductor materials, Hall sensors show a strong temperature dependency and also a drift when subjected to temperature cycles Manic et al. (2000). Four factors mainly influence the mechanical stress in the sensitive layer. These are the geometry of the device, the differences of the coefficients of thermal expansion of the package materials, the temperature-dependent material properties and the time-dependent, viscous material properties. The objective of this investigation was to determine the mechanical stress in a moulded Hall sensor during the packaging process by finite-element simulation in comparison to experimental methods. It is shown that after each process-step the mechanical stress in the sensitive layer changes over time depending on the absolute value and the rate of the temperature change. Measurements of the inverse bending radius of glued and moulded chips show good agreement to the simulations.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号