首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 349 毫秒
1.
研究了自韧Si_3N_4的高温力学性能、氧化行为和抗热震性能。结果表明,晶界玻璃相对高温性能有重要影响,在室温~1350℃的范围内,自韧Si_3N_4的抗弯强度随温度的升高而降低,断裂韧性随温度的升高而增加;在1300~1350℃的温度范围内,自韧Si_3N_4的氧化符合抛物线规律,氧化过程主要由晶界处添加剂离子和杂质离子的扩散过程控制。由于热应力导致裂纹的产生和扩展,使得热震后材料的性能降低。  相似文献   

2.
本文首次提出并采用NaOH H_2O_2的混合溶液作为SiO气体的吸收液,用硅钼兰分光光度法进行检测分析。结果表明,Si_3N_4粉末在高温下的低氧分压(Po_2≤10Pa)气氛中氧化时有SiO气体生成。其中当温度为1300℃时,在氧分压为1Pa~10Pa的N_2气氛中氧化时,生成SiO气体的氧化反应占Si_3N_4总的氧化反应的70~80%。同时,通过热力学计算对Si_3N_4粉末氧化生成SiO进行了分析,揭示了Si_3N_4的氧化反应方式与氧分压和温度的相互关系。  相似文献   

3.
利用EPMA和XRD的分析方法,研究了Si_3N_4陶瓷材料表面氧化层的组成。结果表明,Si_3N_4陶瓷材料表面的氧化层,是由方石英相和含有Al_2O_3、CaO等杂质的SiO_2玻璃相所组成。其中SiO_2玻璃相中Al_2O_3、CaO等杂质的含量,随着氧化时间的增加而逐渐增加。  相似文献   

4.
Si_3N_4陶瓷材料的氧化行为及其抗氧化研究   总被引:2,自引:1,他引:1  
研究了Si3N4陶瓷材料的氧化行为 ,同时探讨了通过表面处理使Si3N4陶瓷材料表面形成一层Si2 N2 O对其抗氧化性能的影响。实验结果表明 ,Si3N4陶瓷材料在空气中的氧化行为服从抛物线规律。另外 ,用X射线衍射分析 (XRD)和X光电子能谱 (XPS)分析验证了Si2 N2 O层的存在。由于形成了Si2 N2 O层 ,Si3N4陶瓷材料在 130 0℃下氧化 10 0h后 ,氧化增重从原来的 0 .4 2mg/cm2 降低到 0 .2 4mg/cm2 ,其抗氧化性能有了明显的提高。同时 ,表面处理后Si3N4陶瓷材料的强度也有一定的提高 ,其中室温强度从原来的62 1MPa提高到 662MPa。  相似文献   

5.
Si2N4陶瓷材料具有高强度、耐磨、耐高温、耐热冲击和有自润滑性等特点,因此可作为高温结构材料。然而,Si3N4陶瓷材料在高温下使用时往往存在着氧化问题,这直接影响了Si3N4陶瓷材料的使用寿命和各种性能。对其氧化层中的方石英相大多是用X射线衍射分析(XRD)的方法来测定的。为了更好的研究Si3N4陶瓷材料表面氧化层的组成,在采用X射线衍射分析方法的同时,还采用XPS分析方法对表面氧化层中Si的存在状态进行了分析。首先对在空气中1300℃下氧化了100h的Si3N4陶瓷材料表面的氧化层进行了XPS分析,结果表明在表面氧化层中存在的…  相似文献   

6.
顾培芷  肖义新 《硅酸盐学报》1991,19(4):381-384,311
制备了含10vol%,20vol%及30vol%SiC晶须的Si_3N_4基复合材料,对其室温及高温机械强度的测试研究表明,SiC晶须对基体的高温机械性能有明显的增强作用。含20vol%SiC晶须的复合材料1200℃下强度达780MPa,比基体材料提高50%。通过SEM和TEM研究,讨论了SiC晶须增强的原因。  相似文献   

7.
赵娟  王贵  刘朗  郭全贵 《广东化工》2007,34(10):25-28
采用料浆烧结法在石墨表面制备SiC抗氧化涂层。研究涂层在1200℃、1300℃和1400℃高温下的氧化行为。结果表明,该涂层系统在1200℃具有较佳的抗氧化性能,在空气中氧化10 h,其重量的损失率仅为0.36%;随着氧化温度的提高,涂覆试样的抗氧化性能降低,并从微观结构上分析和解释此涂层在不同氧化温度下的氧化行为。  相似文献   

8.
为了制备致密的Si_3N_4陶瓷,在Si_3N_4粉末中加入15%(w)的助烧剂(Li_2O-Al_2O_3),经过球磨、造粒、烘干成型后,在传统电炉中埋碳和Si_3N_4粉,于1 550、1 600、1 650℃保温2 h后无压烧结制备Si_3N_4陶瓷,研究了烧结助剂配比和烧结温度对试样致密化、线收缩率、质量损失率、相转变以及微观结构的影响。结果表明:1)随着助烧剂中Li2O比例的增加,Si_3N_4陶瓷的致密度先增加后降低。随着温度的升高,Si_3N_4陶瓷的密度不断提高,当达到1 600和1 650℃时,试样的相对密度分别达到93%和95%以上; 2)在1 600℃时,所有试样物相中都已经生成β-Si_3N_4,并随着烧结温度的升高其转化率逐渐增加,显微结构照片可以看到明显的棒状β-Si_3N_4;3)采用低温埋碳和Si_3N_4粉的烧结工艺为低成本Si_3N_4陶瓷的制备提出了可行的方法。  相似文献   

9.
本工作选用MgO-Al_2O_3-SiO_2-(TiO_2)系统中两种不同的组成和体积分数的添加物,在1450和1550℃帮助Si_3N_4热压烧结。测定了室温和高温抗折强度、断裂韧性和硬度;用χ射线衍射测定α-β相交,用电子显微镜观察晶粒形貌,并与在1650和1750℃热压的Si_3N_4进行了比较。 1550℃热压Si_3N_4接近完全致密,具有α相等轴状细晶粒形貌。其室温强度为500~570MN/m~2,硬度(HR_A)为94~95。由于晶界玻璃相的存在,在1200℃的抗折强度降为267~290MN/m~2。根据本工作的结果,低温热压Si_3N_4可能适合于作为耐磨材料,也有可能作为纤维补强复合材料的基体。  相似文献   

10.
采用新型冷冻胶凝陶瓷成型技术制备高性能Si_3N_4/BAS复相陶瓷透波材料,对Si_3N_4/BAS复相陶瓷材料烧结体成分、力学性能、微观形貌、电性能及抗热震性等进行研究。结果表明:坯体成型收缩率小于1%,在温度升到1 300℃高温时,Si_3N_4/BAS复相陶瓷烧结体弯曲强度280 MPa,弹性模量为90 GPa,介电常数变化率仅为6%。该复相陶瓷材料具有良好的抗热震性能及可加工性,BAS陶瓷玻璃相高温高黏度特性对Si_3N_4/BAS复相陶瓷材料抗热震是一种热应力缓释方式。  相似文献   

11.
Kinetics of oxidation reactions of H2; and mixture H2 + NH3 on Pt has been studied at atmospheric pressure using a compensative electrothermography method. Existence of multiple steady states of catalyst activity and of isothermal critical phenomena is demonstrated for the system H2 + O2. Regions of reaction occurence are singled out and studied. Relaxation autooscillations of activity are detected. The phenomena observed are interpreted in terms of the hypothesis of branching-chain surface process. The study of critical phenomena in the mixture H2 + NH3; points to a common nature of active centres at oxidation of H2 and NH3 on Pt. A possible explanation of physical nature of active centres (a.c.) in the branching-chain surface process is proposed; the hypothesis suggests that a.c. are represented by catalyst adatoms.  相似文献   

12.
Abstract

Kinetics of oxidation reactions of H2; and mixture H2 + NH3 on Pt has been studied at atmospheric pressure using a compensative electrothermography method. Existence of multiple steady states of catalyst activity and of isothermal critical phenomena is demonstrated for the system H2 + O2. Regions of reaction occurence are singled out and studied. Relaxation autooscillations of activity are detected. The phenomena observed are interpreted in terms of the hypothesis of branching-chain surface process. The study of critical phenomena in the mixture H2 + NH3; points to a common nature of active centres at oxidation of H2 and NH3 on Pt. A possible explanation of physical nature of active centres (a.c.) in the branching-chain surface process is proposed; the hypothesis suggests that a.c. are represented by catalyst adatoms.  相似文献   

13.
采用氧化后再氧化的实验方法,通过对 Si3 N4 陶瓷材料氧化行为的研究和氧化动力学的分析,讨论了 Si3 N4 陶瓷材料的氧化机理。结果表明, Si3 N4 陶瓷材料的氧化行为表现为氧化增量随时间的变化服从抛物线规律:(Δ W )2 = Kp t 。提出了氧在氧化层中的向内扩散是 Si3 N4 氧化过程中的控制步骤;并认为烧结添加剂或杂质等对 Si3 N4 陶瓷材料氧化速度的影响,是通过改变氧化层的组成、结构,使氧在氧化层中的扩散速度发生变化而产生的。  相似文献   

14.
Si3N4陶瓷材料的氧化行为及其抗氧化研究   总被引:8,自引:0,他引:8  
张其土 《陶瓷学报》2000,21(1):23-27
研究了Si3N4陶瓷材料的氧化行为,同时探讨了通过表面处理使Si3N4陶瓷材料表面形成一层Si2N2O对其抗氧化性能的影响。实验结果表明,Si3N4陶瓷材料在空气中的氧化行为服从抛物线规律。另外,用X射线衍射分析(XRD)和X光电子能谱(XPS)分析验证了Si2N2O层的存在。由于形成了Si2N2O层,Si3N4陶瓷材 在1300℃下氧化100h后,氧化增重从原来的0.42mg/cm^2降低到0.2  相似文献   

15.
16.
以Si3N4粉末和添加了Al2O3的热压Si3N4陶瓷材料作为研究对象,分别研究了Si3N4材料在空气气氛中和在N2气气氛中(其中氧分压Po2=1~10Pa)的氧化反应方式。利用化学分析、x射线衍射分析和x光电子能谱分析,对Si3N4材料的氧化产物进行了测定,同时对Si3N4材料的氧化反应方式进行了热力学分析。结果表明,在高温下的空气中氧化时,氧化反应方式为钝化氧化,而在高温下的N2气气氛中氧化时,虽然有少部分的钝化氧化存在,但氧化反应方式主要是活化氧化。  相似文献   

17.
ZrB2-ZrO2陶瓷的抗热震和抗氧化性能   总被引:1,自引:0,他引:1  
通过沉淀法制备了纳米ZrO2包覆ZrB2颗粒的ZrB2--ZrO2复合粉体,采用放电等离子烧结技术,在30 MPa,1 900℃保温10 min烧结得到ZrB2-ZrO2复相陶瓷.研究了ZrO2含量对复相陶瓷抗热震和抗氧化性能的影响.将ZrB2-ZrO2复相陶瓷在1 000℃保温5 min,然后急冷进行循环热震评价,对其在1 200℃空气环境下进行抗氧化性能的评价.结果表明:随着ZrO2含量的增加,抗热震性能明显提高,抗氧化性能得到明显改善,氧化质量增加迅速下降.材料的氧化过程分为2个阶段:第一阶段形成氧化层,氧化质量增加明显;第二阶段由于氧化层的存在,氧化质量增加速率减缓.ZrB2-ZrO2复相陶瓷的表面氧化层较纯ZrB2陶瓷表面氧化层致密且结合强度大.  相似文献   

18.
负载型湿式氧化催化剂RuO2/γ-Al2O3活性与稳定性   总被引:1,自引:0,他引:1  
采用浸渍法制备了RuO2 /γ Al2 O3 催化剂 ,以苯酚为目标有机物重点研究了进水 pH值和温度对RuO2 /γ Al2 O3 催化剂组分溶出和活性的影响 .结果表明 ,催化剂在降解苯酚过程中存在着组分溶出现象 ,随着进水溶液pH值降低催化剂组分溶出量增加 ,且在进水为酸性时苯酚去除率高于碱性时的去除率 .反应温度升高 ,催化剂组分溶出量降低 ,苯酚去除率增加 .采用在负载型RuO2 /γ Al2 O3 催化剂中掺杂Ce和Zr的方法对抑制催化剂组分溶出进行了初步研究 ,发现掺杂Ce和Zr后有效地降低了RuO2 /γ Al2 O3 催化剂组分的溶出 ,且提高了催化剂的活性  相似文献   

19.
预焙阳极氧化机理与提高抗氧化性主要方法   总被引:2,自引:0,他引:2  
综述了预焙阳极氧化机理以及石油焦原料空气反应性和二氧化碳反应性能,分析和指出了阳极抗氧化性差对铝电解过程的影响和危害,同时对提高阳极抗氧化性能的主要方法与措施进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号