首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achievement of high class surface finish is important to the high volume automotive industry when using the resin transfer molding (RTM) process for exterior body panels. Chemical cure shrinkage of the polyester resins has a direct impact on the surface finish of RTM molded components. Therefore, resins with low profile additives (LPA) are used to reduce cure shrinkage and improve surface quality of the composite parts. However, little is known about the behaviour of low profile resins during RTM manufacturing and their ultimate effects on the surface quality of molded plaques. In this work, the effects of controlled material and processing parameters on the pressure variations, process cycle times and ultimately on the surface quality of RTM molded components were investigated. Taguchi experimental design techniques were employed to design test matrices and an optimization analysis was performed. Test panels were manufactured using a flat plate steel mold mounted on a press. Pressure sensors were inserted in the mold cavity to monitor pressure variations during different stages of cure and at various locations in the mold cavity. It was found that a critical amount of LPA (10%) was required to push the material against the mold cavity and to compensate for the resin cure shrinkage. A significant increase in pressure was observed during the later stages of resin cure due to the LPA expansion. The pressure increase had a significant effect on the surface roughness of the test samples with higher pressures resulting in better surface finish. A cure gradient was observed for low pressure injections which significantly reduced the maximum pressure levels.  相似文献   

2.
Stamp forming of two unconsolidated commingled E-glass fiber/polypropylene fabric composites with nominal weights of 743 and 1485 g/m2 has been studied for simple mold geometry. For this manufacturing process, unconsolidated commingled fabrics are transferred directly from an oven to a press where they are stamped using a matched-dies metal mold to achieve simultaneous consolidation and conformation to the mold shape. In this study, the influence of the stamping parameters such as the stamping pressure, stamping temperature, mold temperature, loading rate and holding time are determined on the flexural properties, void content and void distribution. Results obtained for the stamp forming process of the unconsolidated fabrics were compared with results obtained by compression molding of the unconsolidated fabrics and by stamping pre-consolidated fabrics. For the fabric with the higher nominal weight, the flexural properties were found to be lower than the optimal properties, while for the fabric with the lower nominal weight the flexural properties were equivalent to the optimal properties determined by compression molding. Good correspondence was found between the variation of the flexural properties and the variation of the void content. This allows the mechanical properties to be approximated by only measuring the void content. Finally, the minimum temperature at which the stamping pressure has to be applied in order to successfully process the unconsolidated fabrics is determined.  相似文献   

3.
Relationships between impregnation mechanisms, consolidation quality and resulting mechanical properties of CF/PEEK thermoplastic composites manufactured from a commingled yarn system have been investigated. A small compression mould was used to apply the different processing conditions (i.e. pressure, holding time and processing temperature). The consolidation quality of finished samples was characterized mainly through microscopic studies of the microstructure of the material associated with density measurements and evaluations of mechanical properties using a small transverse flexure testing facility. A model for qualitatively describing the impregnation and consolidation processes in commingled-yarn-based thermoplastic composites was developed, which predicts variations of void content during consolidation as well as the time, temperature and pressure required to reach full consolidation. Good correlations between predictions and the experimental data indicate the success of the approach. For a desired, minimum level of void content (Xv = 0.5%), optimum processing windows for manufacturing of CF/PEEK composite parts from the commingled yarn preform are suggested.  相似文献   

4.
To optimize the co-cure processing of honeycomb sandwich composites, three parameters, namely the ramp rate, pressure and application time of pressure were varied. Meanwhile, the inner pressure profile was on-line monitored to reveal the influence mechanism the final quality of the samples. Fillet size, resin content and porosity were used to characterize the bonding performance and panel quality. In addition, the climbing drum peeling strength was applied to characterize the interfacial bonding performance of the sandwich structure. It is found that product with the good fillet and little void content in the panels can be obtained by applying pressure of 0.4 MPa after holding 50 min at 100 °C; plus force induced by the surface tension partly contributes to the formation of fillets; ramp rate of temperature has a significant influence on the quality of the panel and gas permeation of the panels should be considered during the optimization of operating conditions.  相似文献   

5.
利用热模压工艺制备玻璃纤维增强聚丙烯(GF/PP)复合材料层合板,通过差示扫描量热(DSC)法试验分析,确定相变参数,运用ANSYS有限元分析,将复合材料热力学参数与温度的非线性关系定义到材料特性中,研究模压成型过程中温度场变化情况,为模压成型工艺制度的确立提供理论指导和依据。以压缩强度、层间剪切强度和冲击韧性作为力学性能评价指标,采用响应曲面法探讨和分析制备工艺对GF/PP复合材料层合板力学性能的影响,得到最优模压工艺制备参数,获得最高复合材料层合板力学性能,为GF/PP复合材料自动铺放奠定铺放工艺基础。试验结果表明:模压加热工艺参数对复合材料层合板力学性能的影响度(从大到小)依次为:热压温度、热压时间、热压压力。较优的模压加热工艺参数为:热压温度228℃、热压时间6 min、热压压力1.1 MPa,在此工艺条件下制备的GF/PP复合材料层合板,层间剪切强度为31.12 MPa,压缩强度为100.96 MPa,冲击韧性为2.27 kJ/cm2。   相似文献   

6.
建立了一种变模温和型腔气体反压协同控制的微孔发泡注塑技术,研制了相应的变模温控制系统与型腔气体反压控制系统,构建了变模温与型腔气体反压辅助微孔发泡注塑试验线,并对变模温与型腔气体反压作用下的产品内外泡孔结构演变进行了研究。结果表明,变模温与型腔气体反压辅助工艺单独施加于微孔发泡注塑技术时,对其产品内外泡孔结构均具有双重影响:变模温可以改善产品大部分的表面形貌,但其对填充过程中的熔体发泡影响不大;型腔气体反压可以基本抑制填充过程中的熔体发泡,但却对产品内部泡孔密度有比较明显的降低影响。通过变模温与型腔气体反压的协同控制,可以实现微孔发泡注塑产品表面气泡形貌和内部泡孔结构的良好调控。  相似文献   

7.
Rapid heat cycle molding (RHCM) is a recently developed innovative injection molding technology to enhance the surface quality of the plastic parts without extending the molding cycle. Most of the common defects that occur in the plastic parts produced by conventional injection molding (CIM), such as flow mark, silver mark, jetting mark, weld mark, exposed fibers, short shot, etc., can be well solved by RHCM. However, RHCM is not a nostrum for all the defects in injection molding. Sink mark and warpage are two major defects occurring in RHCM. The purpose of this study is to investigate and further solve the sink mark and warpage of the molded parts in RHCM. To solve the problem of sink mark, a new “bench form” structure for the screw stud on the product coupling with a lifter structure for the injection mold was proposed. The external gas assisted packing was also proposed to reduce the sink mark in RHCM. To solve the problem of warpage, design of experiments via Taguchi methods were performed to systematically investigate the effect of processing parameters including melt temperature, injection time, packing pressure, packing time and also cooling time on the warpage. Injection molding simulations based on Moldflow were conducted to acquire the warpages of the plastic parts produced under different processing conditions. A signal to noise analysis was conducted to analyze the effect of the factors, and the optimal processing parameters were also found out. ANOVA was also conducted to quantitatively analyze the percentage contributions of the processing parameters on the warpage. The verification results show that part warpage can be reduced effectively based on the optimal design results.  相似文献   

8.
Micropowder injection molding (μPIM) is a potential low-cost process for the mass production of metal or ceramic microstructures. In order to obtain good molded microstructures and to avoid molding defects, it is important to select suitable injection molding parameters. In this paper, the selection of injection molding conditions for the production of 316L stainless steel microstructures by μPIM is presented. Silicon mold inserts with 24 × 24 microcavities were injection molded on a conventional injection molding machine. The dimensions of each microcavity were Φ 100 μ m × depth 200 μm, giving an aspect ratio of 2. The distance between each microcavity was 200 μm. Five sets of experiments were conducted by varying one injection molding parameter at a time. The parameters included injection pressure, holding pressure, holding time, mold temperature, and melt temperature. Higher injection pressure and holding pressure were required during the injection molding process due to the small dimensions of the microcavities and the large number of microcavities (576 microcavities). High mold temperature was required for complete filling of the microcavities. Molded microstructures without visual defects were obtained using appropriate injection molding parameters. Catalytic debinding and sintering of the 316L stainless steel microstructures were successfully conducted.  相似文献   

9.
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products’ mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.  相似文献   

10.
Consolidation quality and corresponding mechanical properties of GF/PP thermoplastic composites manufactured from a commingled yarn system have been investigated. A small compression mould with a laboratory hot press was used to apply the different processing variables (i.e. pressure, holding time and processing temperature). The consolidation quality of finished samples was characterized mainly through (a) microscopic studies of the material's microstructure, (b) density measurements, and (c) evaluations of mechanical properties using a small transverse flexure testing facility. A model for qualitatively describing the impregnation and consolidation processes in commingled yarn based thermoplastic composites was applied to predict variations of void content during consolidation and the time, temperature and pressure required to reach full consolidation. Based on a desired, minimum level of void content (X v =2.0%), optimum processing windows for manufacturing of GF/PP commingled yarn composites are suggested.  相似文献   

11.
Replication of metal microstructures by micro powder injection molding   总被引:4,自引:0,他引:4  
In this paper, a study on the production of 316L stainless steel microstructures by μPIM (powder injection molding) is presented. Two types of mold inserts were used and the molding was conducted on a conventional injection molding machine. Based on the characteristics of the mold inserts and the feedstock, suitable processing parameters were selected. Some requirements for the production of the microstructures are discussed. For example, a relatively high mold temperature, high injection pressure and holding pressure were required. The study showed that 316L stainless steel microstructures of φ100 × 200 μm can be injection molded, but there were incomplete filling and demolding problem in the case of smaller microstructures of φ60 × 191 μm. The molded parts were successfully debound and sintered.  相似文献   

12.
Air entrapment within and between fiber tows during preform permeation in liquid composite molding (LCM) processes leads to undesirable quality in the resulting composite material with defects such as discontinuous material properties, failure zones, and visual flaws. Essential to designing processing conditions for void-free filling is the development of an accurate prediction of local air entrapment locations as the resin permeates the preform. To this end, the study presents a numerical simulation of the infiltrating dual-scale resin flow through the actual architecture of plain weave fibrous preforms accounting for the capillary effects within the fiber bundles. The numerical simulations consider two-dimensional cross sections and full three-dimensional representations of the preform to investigate the relative size and location of entrapped voids for a wide range of flow, preform geometry, and resin material properties. Based on the studies, a generalized paradigm is presented for predicting the void content as a function of the Capillary and Reynolds numbers governing the materials and processing. Optimum conditions for minimizing air entrapment during processing are also presented and discussed.  相似文献   

13.
This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.  相似文献   

14.
The effect of temperature cycle on the void volume fraction, shape and spatial distribution was determined by means of X-ray microtomography in [0]10 AS4/8552 composite laminates manufactured by compression molding. Cure temperatures were designed to obtain different processing windows while the overall degree of cure was equivalent, leading to laminates with average porosities in the range 0.4% and 2.9%. Regardless of the final porosity, voids were elongated, oriented parallel to the fibers and concentrated in channels along the width of the laminate as a result of the inhomogeneous process of consolidation and resin flow along the fibers. The interlaminar shear strength was found to be controlled by the void volume fraction in panels with porosity above 1%.  相似文献   

15.
Injection molding has been found to be an efficient and cost-effective manufacturing technique for the production of a wide variety of parts and components at both macro- and microscale. This is attributed to the application of robust design and process development. However, every manufacturing technique is challenged by quality issues and part defects, but tackled by continuous improvement framework(s). This systematic monitoring and control approach of dimensional accuracy, mechanical properties, and surface quality of the finished part strongly depend on process conditions at different production stage. Therefore, the aim of this study is to review process development of micro-metal injection molding; focusing on critical factors influencing part quality and optimization of process parameters. The critical factors that influenced the finished part quality are part design, mold design, material selection, machine, and process conditions. Optimizing mold temperature, melt temperature, injection speed, injection pressure, cooling time, packing, and holding parameters improve the quality of the molded part. This trend of process development of injection molding gave rise to a broad scope of applications with brighter future potentials for the next decades, particularly for medical and electronics applications.  相似文献   

16.
Liquid composite moulding of Lactam 12 monomer and activating system (APLC12) into satin weave carbon fabrics is investigated, with emphasis on minimising the void content in the final part. The main sources for void formation are identified. The solidification shrinkage is quantified to account for at most 9% in the matrix. Optimal flow conditions are determined to minimize void content during liquid moulding. Finally, as the monomer is kept under Nitrogen prior to processing, diffusion and solubility of Nitrogen in the monomer are characterized, to indicate that Nitrogen coalescence during injection is a major cause of voids in the final part. The average void content is reduced from initially 15% to below 1% in polyamide 12 based composite plates with optimised process conditions.  相似文献   

17.
The purpose of this study is to achieve an optimum fabrication condition for the continuous carbon fiber reinforced PEEK matrix composites based on a micro-braiding fabrication method. The composite plates were fabricated at three processing temperatures (380, 410 and 440 °C) and three holding times (20, 40 and 60 min), respectively, with a total number of nine different fabrication conditions, and their bending properties were investigated in terms of thermal and fracture characterizations. As a result, the bending performance of the fabricated composites was significantly affected at the 440 °C temperature. Although no significant change in the bending performance was seen at the 380 and 410 °C with all the holding times, the thermal and fracture characterizations implied a degradation of the PEEK matrix property during the fabrication process. In order to avoid the matrix degradation and the decrease of mechanical properties, a lower fabrication temperature with a shorter holding time should be recommended for the carbon/PEEK composites fabricated by the micro-braiding method.  相似文献   

18.
采用Moldflow对聚丙烯及其短玻璃纤维增强复合材料的注塑成型过程进行3D模拟分析,基于Taguchi试验设计方法(DOE),采用L16(45)正交矩阵进行试验设计,研究工艺参数对注射压力和翘曲变形的影响。结果表明,纤维含量对注射压力和翘曲变形影响作用较为显著,且存在最佳值;模具温度、熔体温度、保压时间和保压压力对注射压力的影响为单调的线性关系,但其对翘曲变形的影响较复杂。  相似文献   

19.
We studied the mechanism of volatile-induced surface porosity formation during the resin transfer molding (RTM) of aerospace composites using a blended benzoxazine/epoxy resin, and identified reduction strategies based on material and processing parameters. First, the influence of viscosity and pressure on resin volatilization were determined. Then, in situ data was collected during molding using a lab-scale RTM system for different cure cycles and catalyst concentrations. Finally, the surface quality of molded samples was evaluated. The results show that surface porosity occurs when cure shrinkage causes a sufficient decrease in cavity pressure prior to resin vitrification. The combination of thermal gradients and rapid gelation can generate large spatial variations in viscosity, rendering the coldest regions of a mold susceptible to porosity formation. However, material and cure cycle modifications can alter the resin cure kinetics, making it possible to delay the pressure drop until higher viscosities are attained to minimize porosity formation.  相似文献   

20.
用扫描电镜(SEM)观察了气体辅助注射成型(GAIM)和常规注射成型(CIM)等规聚丙烯(iPP)在不同部位的结晶形态。发现CIM试样的"皮-芯"结构不明显,而GAIM试样在不同部位则形成了包括球晶、串晶和取向片晶,进而表现出明显的多层次结构。在结晶形态分析的基础上,初步探讨了GAIM制品多层次结构的形成机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号