首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Recent years have witnessed rapid progresses made in the photoelectric performance of two‐dimensional materials represented by graphene, black phosphorus, and transition metal dichalcogenides. Despite significant efforts, a photodetection technique capable for longer wavelength, higher working temperature as well as fast responsivity, is still facing huge challenges due to a lack of best among bandgap, dark current, and absorption ability. Exploring topological materials with nontrivial band transport leads to peculiar properties of quantized phenomena such as chiral anomaly, and magnetic‐optical effect, which enables a novel feasibility for an advanced optoelectronic device working at longer wavelength. In this work, the direct generation of photocurrent at low energy terahertz (THz) band at room temperature is implemented in a planar metal–PtTe2–metal structure. The results show that the THz photodetector based on PtTe2 with bow‐tie‐type planar contacts possesses a high photoresponsivity (1.6 A W?1 without bias voltage) with a response time less than 20 µs, while the PtTe2–graphene heterostructure‐based detector can reach responsivity above 1.4 kV W?1 and a response time shorter than 9 µs. Remarkably, it is already exploitable for large area imaging applications. These results suggest that topological semimetals such as PtTe2 can be ideal materials for implementation in a high‐performing photodetection system at THz band.  相似文献   

2.
Sb2O3 molecules offer unprecedented opportunities for the integration of a van der Waals (vdW) dielectric and a 2D vdW semiconductor. However, the working mechanisms underlying molecules-based vdW dielectrics remain unclear. Here, the working mechanisms of Sb2O3 and two Sb2O3-like molecules (As2O3 and Bi2O3) as dielectrics are systematically investigated by combining first-principles calculations and gate leakage current theories. It is revealed that molecules-based vdW dielectrics have a considerable advantage over conventional dielectric materials: defects hardly affect their insulating properties. This shows that it is unnecessary to synthesize high-quality crystals in practical applications, which has been a long-standing challenge for conventional dielectric materials. Further analysis reveals that a large thermionic-emission current renders Sb2O3 difficult to simultaneously satisfy the requirements of dielectric layers in p-MOS and n-MOS, which hinders its application for complementary metal-oxide-semiconductor (CMOS) devices. Remarkably, it is found that As2O3 can serve as a dielectric for both p-MOS and n-MOS. This work not only lays a theoretical foundation for the application of molecules-based vdW dielectrics, but also offers an unprecedentedly competitive dielectric (i.e., As2O3) for 2D vdW semiconductors-based CMOS devices, thus having profound implications for future semiconductor industry.  相似文献   

3.
Ferroelectric field-effect transistors (FeFETs) are one of the most interesting ferroelectric devices; however, they, usually suffer from low interface quality. The recently discovered 2D layered ferroelectric materials, combining with the advantages of van der Waals heterostructures (vdWHs), may be promising to fabricate high-quality FeFETs with atomically thin thickness. Here, dual-gated 2D ferroelectric vdWHs are constructed using MoS2, hexagonal boron nitride (h-BN), and CuInP2S6 (CIPS), which act as a high-performance nonvolatile memory and programmable rectifier. It is first noted that the insertion of h-BN and dual-gated coupling device configuration can significantly stabilize and effectively polarize ferroelectric CIPS. Through this design, the device shows a record-high performance with a large memory window, large on/off ratio (107), ultralow programming state current (10−13 A), and long-time endurance (104 s) as nonvolatile memory. As for programmable rectifier, a wide range of gate-tunable rectification behavior is observed. Moreover, the device exhibits a large rectification ratio (3 × 105) with stable retention under the programming state. This demonstrates the promising potential of ferroelectric vdWHs for new multifunctional ferroelectric devices.  相似文献   

4.
Three-dimensional (3D) topological insulators (TIs) have generated tremendous research interest over the past decade due to their topologically-protected surface states with linear dispersion and helical spin texture. The topological surface states offer an important platform to realize topological phase transitions, topological magnetoelectric effects and topological superconductivity via 3D TI-based heterostructures. In this review, we summarize the key findings of magneto and quantum transport properties in 3D TIs and their related heterostructures with normal insulators, ferromagnets and superconductors. For intrinsic 3D TIs, the experimental evidences of the topological surface states and their coupling effects are reviewed. Whereas for 3D TI related heterostructures, we focus on some important phenomenological magnetotransport activities and provide explanations for the proximity-induced topological and quantum effects.  相似文献   

5.
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light‐emitting devices, and photodiodes. In this work, high‐performance photovoltaic photodetectors based on MoTe2/MoS2 vertical heterojunctions are demonstrated by exfoliating‐restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W?1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications.  相似文献   

6.
7.
The discovery of two-dimensional (2D) materials with unique electronic, superior optoelectronic, or intrinsic magnetic order has triggered worldwide interest in the fields of material science, condensed matter physics, and device physics. Vertically stacking 2D materials with distinct electronic and optical as well as magnetic properties enables the creation of a large variety of van der Waals heterostructures. The diverse properties of the vertical heterostructures open unprecedented opportunities for various kinds of device applications, e.g., vertical field-effect transistors, ultrasensitive infrared photodetectors, spin-filtering devices, and so on, which are inaccessible in conventional material heterostructures. Here, the current status of vertical heterostructure device applications in vertical transistors, infrared photodetectors, and spintronic memory/transistors is reviewed. The relevant challenges for achieving high-performance devices are presented. An outlook into the future development of vertical heterostructure devices with integrated electronic and optoelectronic as well as spintronic functionalities is also provided.  相似文献   

8.
Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field‐effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap‐limited transport, and space‐charge‐limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe2. This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe2 and metal/WSe2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits.  相似文献   

9.
2D semiconductors have shown great potential for application to electrically tunable optoelectronics. Despite the strong excitonic photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDs), their efficient electroluminescence (EL) has not been achieved due to the low efficiency of charge injection and electron–hole recombination. Here, multioperation-mode light-emitting field-effect transistors (LEFETs) consisting of a monolayer WSe2 channel and graphene contacts coupled with two top gates for selective and balanced injection of charge carriers are demonstrated. Visibly observable EL is achieved with the high external quantum efficiency of ≈6% at room temperature due to efficient recombination of injected electrons and holes in a confined 2D channel. Further, electrical tunability of both the channel and contacts enables multioperation modes, such as antiambipolar, depletion,and unipolar regions, which can be utilized for polarity-tunable field-effect transistors and photodetectors. The work exhibits great potential for use in 2D semiconductor LEFETs for novel optoelectronics capable of high efficiency, multifunctions, and heterointegration.  相似文献   

10.
By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one-step magnetization reversal that is still conceptual in conventional magnets due to the limited strain-tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3GeTe2 (FGT), and a dramatic increase of the coercive field (Hc) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain–temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain-tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications.  相似文献   

11.
Van der Waals (vdW)‐integrated heterojunctions have been widely investigated in optoelectronics due to their superior photoelectric conversion capability. In this work, 0D bismuth quantum dots (Bi QDs)‐decorated 1D tellurium nanotubes (Te NTs) vdW heterojunctions (Te@Bi vdWHs) are constructed by a facile bottom‐up assembly process. Transient absorption spectroscopy suggests that Te@Bi vdWH is a promising candidate for new‐generation optoelectronic devices with fast response properties. The subsequent experiments and density functional theory calculations demonstrate the vdW interaction between Te NTs and Bi QDs, as well as the enhanced optoelectronic characteristics owing to the plasma effects at the interface between Te NTs and Bi QDs. Moreover, Te@Bi vdWHs‐based photodetectors show significantly improved photoresponse behavior in the ultraviolet region compared to pristine Te NTs or Bi QDs‐based photodetectors. The proposed integration of vdWHs is expected to pave the way for constructing new nanoscale heterodevices.  相似文献   

12.
Photoinduced memory devices with fast program/erase operations are crucial for modern communication technology, especially for high‐throughput data storage and transfer. Although some photoinduced memories based on 2D materials have already demonstrated desirable performance, the program/erase speed is still limited to hundreds of micro‐seconds. A high‐speed photoinduced memory based on MoS2/single‐walled carbon nanotubes (SWCNTs) network mixed‐dimensional van der Waals heterostructure is demonstrated here. An intrinsic ultrafast charge transfer occurs at the heterostructure interface between MoS2 and SWCNTs (below 50 fs), therefore enabling a record program/erase speed of ≈32/0.4 ms, which is faster than that of the previous reports. Furthermore, benefiting from the unique device structure and material properties, while achieving high‐speed program/erase operation, the device can simultaneously obtain high program/erase ratio (≈106), appropriate storage time (≈103 s), record‐breaking detectivity (≈1016 Jones) and multibit storage capacity with a simple program/erase operation. It even has a potential application as a flexible optoelectronic device. Therefore, the designed concept here opens an avenue for high‐throughput fast data communications.  相似文献   

13.
III-nitride semiconductors have attracted considerable attention in recent years owing to their excellent physical properties and wide applications in solid-state lighting, flat-panel displays, and solar energy and power electronics. Generally, GaN-based devices are heteroepitaxially grown on c-plane sapphire, Si (111), or 6H-SiC substrates. However, it is very difficult to release the GaN-based films from such single-crystalline substrates and transfer them onto other foreign substrates. Consequently, it is difficult to meet the ever-increasing demand for wearable and foldable applications. On the other hand, sp2-bonded two-dimensional (2D) materials, which exhibit hexagonal in-plane lattice arrangements and weakly bonded layers, can be transferred onto flexible substrates with ease. Hence, flexible III-nitride devices can be implemented through such 2D release layers. In this progress report, the recent advances in the different strategies for the growth of III-nitrides based on 2D materials are reviewed, with a focus on van der Waals epitaxy and transfer printing. Various attempts are presented and discussed herein, including the different kinds of 2D materials (graphene, hexagonal boron nitride, and transition metal dichalcogenides) used as release layers. Finally, current challenges and future perspectives regarding the development of flexible III-nitride devices are discussed.  相似文献   

14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号