首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-healing hydrogels often possess poor mechanical properties which largely limits their applications in many fields. In this work, boron nitride nanosheets are introduced into a network of the poly(vinyl alcohol)/borax (PVA/borax) hydrogels to enhance the mechanical properties of the hydrogel without compromising the self-healing abilities. The obtained hydrogels exhibit excellent mechanical properties with a tensile strength of 0.410 ± 0.007 MPa, an elongation at break of 1712%, a Young's Modulus of 0.860 ± 0.023 MPa, and a toughness of 3.860 ± 0.075 MJ m−3. In addition, the self-healing efficiency of the hydrogels is higher than 90% within 10 min at room temperature. Benefiting from the excellent self-healing properties, the shapeability of the hydrogel fragments is observed using different molds. In addition, the hydrogels display rapid pH-driven shape memory effects and can recover to their original shape within 260 s. Overall, this work provides a new approach to hydrogels with integrated excellent mechanical properties, self-healing abilities, and rapid pH-driven shape memory effects.  相似文献   

2.
The self-healable hydrogels have attracted increasing attention due to their promising potential for ensuring the durability and reliability of hydrogels. However, they still face a serious challenge to achieve a positive balance between mechanical and healing performance, especially for the room-temperature autonomous self-healable hydrogels. Herein, a simple but efficient strategy to fabricate a kind of dynamic boronate and hydrogen bonds dual-crosslinked double network (DN) hydrogel based on a UV-initiated one-pot in situ polymerization of N-acryloyl glycinamide (NAGA) in polyvinyl alcohol-borax slime is reported. The obtained PN-x/PB hydrogels, especially with high content of PNAGA, are shown to possess high mechanical strength, high toughness, and fatigue-resistance properties as well as excellent self-healability at room temperature (nearly 88% self-healing efficiency based on the strain compression test), due to the dynamic DN structure, and the combination of the adaptable and reconfigurable dynamic boronate bonds and hydrogen bonds. Considering the easily available materials and simple preparation process, this novel strategy should offer not only a kind of dynamic DN hydrogel with robust mechanical performance and high self-healing capability, but also enrich the methodological toolbox for synergistic integration of dynamic covalent bonds and hydrogen bonds to surmount the tradeoff between mechanical properties and self-healing capacity of hydrogels.  相似文献   

3.
Poly(vinyl alcohol) (PVA) hydrogels have shown potential applications in bionic articular cartilage due to their tissue-like viscoelasticity, good biocompatibility and low friction. However, their lack of adequate mechanical properties is a key obstacle for PVA hydrogels to replace natural cartilage. In this study, poly(ethylene glycol) (PEG) and glycerol were introduced into PVA, and a PVA/PEG–glycerol composite hydrogel was synthesized using a mixing physical crosslinking method. The mechanical properties, hydrophilicity and tribological behavior of the PVA/PEG–glycerol hydrogel were investigated by changing the concentration of glycerol in PEG. The results showed that the tensile strength of the hydrogel reached 26.6 MPa at 270% elongation at break with 20 wt% of glycerol plasticizer, which satisfied the demand of natural cartilage. In addition, the excellent hydrophilicity of glycerol provides good lubricating properties for the composite gel under dry friction. Meanwhile, self-healing and cellular immunity assays demonstrated that the composite gel could have good self-healing ability and excellent biocompatibility even in the absence of external stimuli. This study provides a new candidate material for the design of articular cartilage, which has the potential to facilitate advances in artificial joint cartilage repair. © 2022 Society of Industrial Chemistry.  相似文献   

4.
Shear-thinning and self-healing hydrogels are being investigated in various biomedical applications including drug delivery, tissue engineering, and 3D bioprinting. Such hydrogels are formed through dynamic and reversible interactions between polymers or polypeptides that allow these shear-thinning and self-healing properties, including physical associations (e.g., hydrogen bonds, guest–host interactions, biorecognition motifs, hydrophobicity, electrostatics, and metal–ligand coordination) and dynamic covalent chemistry (e.g., Schiff base, oxime chemistry, disulfide bonds, and reversible Diels–Alder). Their shear-thinning properties allow for injectability, as the hydrogel exhibits viscous flow under shear, and their self-healing nature allows for stabilization when shear is removed. Hydrogels can be formulated as uniform polymer and polypeptide assemblies, as hydrogel nanocomposites, or in granular hydrogel form. This review focuses on recent advances in shear-thinning and self-healing hydrogels that are promising for biomedical applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48668.  相似文献   

5.
高浓度聚乙烯醇(PVA)水凝胶具有一定的修复功能,但其自修复机理及制备工艺参数对其修复性能的影响缺乏研究。本文采用冷冻-解冻法制备了高浓度自修复PVA水凝胶,通过调整PVA水凝胶制备工艺参数(PVA分子量、PVA浓度、冷冻时间、解冻时间、冷冻-解冻次数、修复时间、冷冻温度等)得到了最佳工艺条件,分析了水凝胶自修复机理,并研究了PVA水凝胶的多次自修复性能。研究结果表明:相对分子质量大的PVA制备的水凝胶自修复性能好;其中冷冻时间为2h,解冻时间为1h,一次冷冻-解冻循环制备得到的水凝胶自修复性能最好,最佳修复时间为12h,能较好地进行反复自修复。指出水凝胶自修复性能主要是由其内部可逆氢键的相互作用形成的,其主要影响源于冷冻-解冻处理后水凝胶内部羟基含量及PVA分子的流动性。  相似文献   

6.
Stretchable, flexible, and strain‐sensitive hydrogels have gained tremendous attention due to their potential application in health monitoring devices and artificial intelligence. Nevertheless, it is still a huge challenge to develop an integrated strain sensor with excellent mechanical properties, broad sensing range, high transparency, biocompatibility, and self‐recovery. Herein, a simple paradigm of stretchable strain sensor based on multifunctional hydrogels is prepared by constructing synergistic effects among polyacrylamide (PAM), biocompatible macromolecule sodium alginate (SA), and Ca ion in covalently and ionically crosslinked networks. Under large deformation, the dynamic SA‐Ca2+ bonds effectively dissipate energy, serving as sacrificial bonds, while the PAM chains bridge the crack and stabilize the network, endowing hydrogels with outstanding mechanical performances, for instance, high stretchability and compressibility, as well as excellent self‐recovery performance. The hydrogel is assembled to be a transparent and wearable strain sensor, which has good sensitivity and very wide sensing range (0–1700%), and can precisely detect dynamic strains, including both low and high strains (20–800% strain). It also exhibits fast response time (800 ms) and long‐time stability (200 cycles). The sensor can monitor and distinguish complicated human motions, opening up a new route for broad potential applications of eco‐friendly flexible strain‐sensing devices.  相似文献   

7.
Polymer networks crosslinked by reversible noncovalent crosslinks have been applied in self-healing and recyclable sustainable materials but result in limited mechanical strength. Herein, a crosslinked polymer blend that is based on a urethane–arcylate system with a combination of reversibly noncovalent intrachain and interchain hydrogen bonds and dynamically covalent urea bonds is developed through facile in situ photo-induced copolymerization. An essential step is the introduction of a flexibly dynamic crosslinker bearing robustly hindered urea bonds and urethane–urea structures into the network, which endows the dynamic network with a synergy of mechanical robustness and desirable self-healing ability. The dynamic networks exhibit rapid self-healing at mild conditions (70 °C, 30 min), extreme toughness (≈34.76 MJ m−3), high tensile strength (≈7.78 MPa), superior stretchability (≈932%), long-term stability, recyclability, and weldability. More importantly, the mechanical and self-healing properties of the resultant materials can be fine-tuned by adjusting the dynamic crosslinker content. These superior properties are attributed to the dynamic reversibility of hydrogen bonds and urea bonds as monitored by rheological tests. The extremely facile fabrication approach and superior properties of the resulting self-healing polymers can find applications in sustainable smart materials and self-healing conductive sensors.  相似文献   

8.
Starch-based hydrogel is widely used as an excellent biocompatibility and biodegradability material. However, due to the disadvantages of poor mechanical properties, brittleness, and low stretchability attribute that remains a challenge to prepare multifunctional starch hydrogel integrating high stretchability, strength, and conducting capacity. In this study, macromolecular microspheres with various wettability are successfully incorporated into the hydrogel prepared using the carboxymethyl starch and polyacrylamide cross-linked by Fe3+ and covalent cross-linker, respectively. The obtained double-network (DN) hydrogel performs good mechanical properties (the fracture stress 483 ± 38 kPa and the elongation at break 1615 ± 25%). Impressively, the obtained DN hydrogels by solvent soaking still maintain excellent mechanical strength and flexibility at −40 °C. Furthermore, it can be assembled to be a resistance-type strain sensor to detect multiscale strain. Therefore, the strategy can shed light on the preparation of multifunctional starch-based hydrogel for broad applications.  相似文献   

9.
姚雪  张素风  钱立伟 《精细化工》2023,40(2):272-279
通过4-(溴甲基)苯基硼酸(PBA)和1-乙烯基咪唑(IL)的烷基化反应制备了苯硼酸离子液体(PBA-IL)单体。在2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)氧化纳米纤维素(CNF)的存在下,通过丙烯酰胺(AM)和PBA-IL的一步聚合反应,制备了一种具有半互穿网络结构的自修复导电水凝胶(PAM/PBA-IL/CNF)。通过1HNMR对PBA-IL的化学结构进行表征;通过FTIR、XPS、SEM对水凝胶的化学结构和物理形貌进行表征,并测试了水凝胶的拉伸性能、自修复性能和导电性能。结果表明,PBA-IL单体和水凝胶成功制备,且水凝胶具有典型的多孔结构。PAM/PBA-IL3/CNF水凝胶[3代表PBA-IL含量为30%,以AM、PBA-IL、CNF悬浮液、N,N’-亚甲基双丙烯酰胺(MBA)溶液、过硫酸铵(APS)的总绝干质量为基准]的断裂应力为335.1 kPa、断裂伸长率为1969.5%、断裂能为12.1 kJ/m2、自修复效率为95.43%(150 min)、电导率为6.38 mS/cm。  相似文献   

10.
以α-甲基丙烯酸、2-丙烯酰胺-2-甲基丙磺酸共聚产物和聚乙烯醇为单体,十水合四硼酸钠为交联剂合成P(MAA /AMPS)-PVA二重互穿网络的pH响应水凝胶;通过扫描电子显微镜(SEM)、红外光谱(FTIR)、凝胶渗透色谱(GPC)、热重分析(DSC-TG)和流变仪等表征了水凝胶的表面形貌和化学状态;测定了水凝胶的溶胀性﹑pH响应性﹑自修复性和流变性。结果表明,水凝胶形成稳定的IPN互穿网络结构且该水凝胶具pH敏感性、自修复性;PVA羟基与硼酸根离子形成的共价配位硼酸酯键决定水凝胶自修复性并受到介质酸碱控制;力学性能测定结果显示,自修复水凝胶拉伸强度668 kPa,断裂伸长率可达665%,修复效率可达81%。  相似文献   

11.
Quadruple shape memory hydrogels were prepared by one-pot in situ copolymerization using acrylamide, acrylic acid, agar, and poly(vinyl alcohol). The hydrogels have multiple reversible shape memory based on the coordination bonds of poly(acrylic acid) with Fe3+, borate bonds based on poly(vinyl alcohol), and hydrogen bonds of agar and poly(vinyl alcohol). The hydrogel demonstrated tunable mechanical properties when the hydrogels immersed in different solutions for various lengths of time. After immersion in the ferric chloride solution, tensile stress and elastic moduli of the hydrogels were enhanced with increasing soaking time. After immersion in the borax solution, tensile stress first increased and then decreased with increasing soaking time. Due to the reversible effect of the borate bond, the hydrogel achieved ultra-fast self-healing. The hydrogel after immersion in borax solution could begin healing in 24 h and healed at 44 h. The tensile stress and tensile strain of the self-healing hydrogel increased when soaking time increased from 48 to 96 h, and tensile stress at healing times of 96 h was nearly as the same as that of the original hydrogel when compared with it. The combination of tunable mechanical properties, efficient recoverability and self-healing abilities coupled with facile preparation endowed the developed hydrogel a high potential for use in biomedical applications.  相似文献   

12.
The aim of this study was to investigate the enhanced absorption property of PVA/Glycerin (PVA/Gly) hydrogel for advanced wound dressing. A simple crosslinking method was introduced to prepare the PVA/Gly hydrogels with the use of γ-irradiation. An absorption ratio and thermal properties of the PVA/Gly hydrogels can be controlled by varying the irradiation dose and weight ratio of the PVA/Gly. When the PVA/Gly content was 20/5 wt% and the irradiation dose at 25 kGy, the PVA/Gly hydrogels showed excellent absorption properties (>350%). These results imply that the PVA/Gly hydrogel is highly absorbent and converts wound exudates to the hydrogel matrices that create a moist and clean environment in the wound healing process. Therefore, the PVA/Gly hydrogel prepared by this method can be used as an advanced wound dressing.  相似文献   

13.
Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical properties is still a challenge. Here, multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. The existence of multicomplexation, entangled PVA chains, and interconnected PPy nanotubes, as well as extensive hydrogen bonding results in the fabrication of hierarchical network of PVA‐PPy hydrogels. PVA‐PPy hydrogels exhibit high stretchability (more than 1000%), multiresponsiveness, low density (0.95 g cm?3), high water content (96%), and 15 s self‐healing features. Furthermore, the self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performances. This facile strategy in this work would be promising to construct an excellent multifunctional soft material for various flexible electrode and biosensor.  相似文献   

14.
Flexible sensors are becoming required in heath monitoring and human–machine interfaces, but it is still a challenge to develop flexible sensors with integrated high performances. Herein, high‐performance flexible sensors are fabricated that are self‐healing, reversibly adhesive, and utilizing stretchable hydrogels, which are composed of a pluronic F127 diacrylate (F127DA) cross‐linked poly(acrylic acid) (PAA) network and polydopamine (PDA), and further cross‐linked by Fe3+. The unique structure endows the resulting hydrogels (PAA‐PDA‐Fe3+ hydrogels) excellent self‐healing property, reversible adhesion property, mechanical stretchability, and electrical conductivity. On the basis of the excellent properties of PAA‐PDA‐Fe3+ hydrogels, flexible sensors with large sensing range (0–575%), high sensitivity (GF = 6.31), low response time (0.25 s), and excellent robustness (>500 cycles) are assembled and further applied in detecting both large and subtle strains induced by human motions and water ripple. Overall, this work not only provides an alternative clue to construct multi‐functional hydrogels, but also offers a new kind of high‐performance materials for flexible electronic devices, especially those for health monitoring and human–machine interface.  相似文献   

15.
An ideal hydrogel with excellent adhesive performance has drawn much attention in research and applications. In this paper, a photo‐crosslinked polyvinyl alcohol bearing styrylpyridinium group/cellulose nanocrystals (PVA‐SbQ/CNC) composite hydrogel is designed through photo‐crosslinking technology for preventing the physical crosslinking of polyvinyl alcohol to maintain enough hydroxy groups in the hydrogel. Thus, the hydrogel exhibits excellent adhesive behavior not only for various solid substrates (plastics, rubbers, glasses, metals, and woods) but also muscle and fat. In addition, the formation mechanism, the swelling behavior, and mechanical strength are also investigated. Also, these results show that photo‐crosslinked PVA‐SbQ/CNC hydrogel possesses high swelling rate, super stretchability, and high toughness. Moreover, adhesive, mechanical, and swelling properties of PVA‐SbQ/CNC hydrogels can be changed with the increase of total incident light intensity. It is anticipated that the photo‐crosslinked PVA‐SbQ/CNC hydrogel would play a significant role in the applications of wound dressing, medical electrodes, tissue adhesives, portable equipment, and super absorbent materials. In this sense, the simple photo‐crosslinking strategy would provide new ideas for designing soft and adhesive materials through controlling the balance of cohesion and adhesion.  相似文献   

16.
以聚丙二醇(PPG)、异佛尔酮二异氰酸酯(IPDI)和含硫扩链剂胱氨酸二甲酯(CDE)为原料,固定摩尔比为1∶3∶2,采用预聚体法制备含硫自修复聚氨酯弹性体(SPU),对SPU进行红外光谱测试、拉曼光谱测试、力学性能和自修复性能测试、划痕修复观察和DSC测试。结果表明,SPU为非晶结构,微相分离程度低;切割50%深度后,通过拉伸强度测试得出其在60℃的自修复效率达到89.8%,原因是动态双硫键的交换反应和分子链的高运动能力(硬段玻璃化转变温度<60℃)。  相似文献   

17.
Hydrogels have the potential to simulate and permeate body tissues. They can be used in many biomedical applications, such as drug delivery, wound dressings, contact lenses, synthetic implants, biosensors, and tissue engineering. Despite recent significant advances in hydrogel fabrication, with the introduction of double network hydrogels, with ionic or hydrogen bonds, there is still the challenge of achieving optimal mechanical properties with appropriate self-healing ability. To solve the above problem, in this study, a new type of starch/chitosan/PVA/borax hydrogel was synthesized by adopting the one-pot method. The effect of concentration and ratio of raw materials on the final properties of hydrogels, such as the degree of hydrophilicity, morphology, degradation, mechanical strength, and drug release rate, was investigated. The properties of hydrogels were examined by scanning electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray diffractometry, and contact angle, which confirmed the composite synthesis and uniform distribution of HNT and curcumin. In addition, the composite hydrogel showed excellent mechanical properties. Drug release studies confirmed that the drug is slowly released from the nanocomposite hydrogels. The results showed that starch-based nanocomposite hydrogels could provide appropriate repairing potential for defects exposed to changeable parameters.  相似文献   

18.
A series of PVA/PVP based hydrogels at different compositions were prepared by gamma irradiation. The gel fraction degree of swelling were investigated. Highly stable and uniformly distributed silver nanoparticles have been obtained onto hydrogel networks. The morphology and structure of (PVA/PVP) hydrogel and dispersion of the silver nanoparticles in the polymeric matrix were examined by scanning electron microscopy (SEM) and infrared spectroscopy (FT-IR), respectively. The formation of silver nanoparticles has been confirmed by ultraviolet visible (UV–vis) spectroscopy. A strong characteristic absorption peak was found to be around 420 nm for the silver nanoparticles in the hydrogel nanocomposite. The X-ray diffraction pattern confirmed the formation of silver nanoparticles with average particle size of 12 nm. The diameter distribution of silver nanoparticles was determined by dynamic light scattering DLS. Transmission electron microscope (TEM) showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network and the mean size of silver nanoparticles ranging is 23 nm. The good swelling properties and antibacterial of PVA/PVP-Ag hydrogel suggest that it can be a good candidate as wound dressing.  相似文献   

19.
自愈合导电水凝胶因其良好的自愈合性能与导电性能,在柔性可穿戴设备中具有巨大的应用前景。以4-甲酰基苯硼酸(Bn)交联聚乙烯醇(PVA)和聚乙烯亚胺(PEI)构建基于硼酸酯键和亚胺键的双重动态交联水凝胶网络,引入聚吡咯修饰的纤维素纳米纤维(PPy@CNF)构建了具有良好自愈合和导电性的PBP-PPy@CNF纳米复合水凝胶。结果表明,当PPy@CNF的质量分数为0.8%时,水凝胶的力学性能最佳,其最大应力可达6.65kPa,断裂拉伸应变可达2080%,电导率为2174μS/m。基于该水凝胶的电阻式传感器具有良好的稳定性和重复性,在应变检测范围0~800%内,灵敏因子GF可分为三个线性响应区域,分别是0~200%(GF1=2.82)、200%~600%(GF2=7.15)和600%~800%(GF3=12.85),该传感器能有效检测人体不同部位的运动,可应用于可穿戴传感设备。  相似文献   

20.
The use of conductive self-healing hydrogels in electronic devices not only reduces replacement and maintenance costs but also prolongs their lifetime. Therefore, developing hydrogels with autonomous self-healing properties and electronic conductivity is vital for the advancement of emerging fields, such as conductors, semiconductors, sensors, artificial skin, and electrodes and solar cells. However, it remains a challenge to fabricate a hydrogel with high conductivity that can be healed quickly at room temperature without any external stimulus. In this work, we report an effective and simple free radical polymerization approach to synthesizing a hydrogel using modified rGO and acrylate monomers containing abundant ion groups. The hydrogel exhibits excellent electronic conductivity, extremely fast electronic self-healing ability, and excellent repeatable restoration performance at 25 °C. The conductivity of the hydrogel reaches 27.2 S/m, the hydrogel recovers its original shape, and scoring scratched on the surface totally disappears after holding at 25 °C for 40 s. This conductive, room-temperature self-healing hydrogel takes unique advantage of supramolecular chemistry and polymer nanoscience and has potential applications in various fields such as self-healing electronics, artificial skin, soft robotics, biomimetic prostheses, and energy storage. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47379.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号