首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
活性炭物理结构与其变压吸附分离瓦斯性能   总被引:1,自引:0,他引:1  
李建华 《材料导报》2011,25(24):73-76
活性炭(AC)在煤层瓦斯气体吸附分离上具有良好的应用前景。选用4种活性炭,利用77K氮气吸附表征了活性炭的物理性质。在自制的静态吸附装置上,测量了4种活性炭样品对瓦斯气(CH4/N2混合气体)在298K和318K时的平衡吸附量,结果发现4种活性炭对CH4/N2吸附能力有较大的差异。用Langmuir吸附方程关联实验数据,计算出4种活性炭在不同温度下对CH4/N2的分离因子。结合4种活性炭的物理性质以及其对CH4/N2的吸附量,分析了影响活性炭对CH4/N2的吸附量的因素。活性炭在变压吸附分离浓缩瓦斯时,应具备合适的孔径,比表面积和孔容越大越好。  相似文献   

2.
废弃物基活性炭吸附性能的影响因素   总被引:1,自引:0,他引:1  
研究了以三种固体有机废弃物-锯木屑、纸张、塑料的热解产物(分别简称木炭、纸炭、塑料热解物)为原料,水蒸气为活化剂制备废弃物基活性炭时吸附性能(以碘值表征)的影响因素。结果表明,在一定的塑料热解物含量条件下,活性炭的吸附性能随木炭、纸炭间组成比的增加而增加,而在一定的木炭、纸炭间组成比下,吸附性能随塑料热解物含量的增加而减少;此外废弃物基活性炭的吸附性能随废弃物热解温度的升高呈现为先增加再减少的变化趋势。  相似文献   

3.
Heteroatoms are elements including sulfur, nitrogen, oxygen and hydrogen which are found on the surface of activated carbons. This study investigated the surface modification arising from heteroatoms bonding to carbon aromatic rings within the activated carbon and their corresponding influence on the chromium adsorption process. Activated carbons were prepared from bagasse by physical. Chromium removal capacities of these activated carbons by adsorption and reduction were determined. Models which related the chromium adsorption and reduction capacities of activated carbons to carbon acidity and heteroatom site concentrations were established using multi-variable linear regression method. It was found the individual heteroatoms contributed separately to the basicity of the carbon which in turn determined the mechanism by which chromium was removed from solution. The surface areas of the carbons were also observed to influence the adsorption and reduction of chromium. These understandings provide the fundamental method of optimising chromium removal through suitable control of carbon surface chemistry and textural properties.  相似文献   

4.
石油焦基活性炭电极电容特性研究   总被引:28,自引:10,他引:18  
用石油焦作原料,KOH为活化剂,在不同活化条件下制备系列不同比表面积的活性炭。用直流恒流循环实验考察活性炭电极的电化学性能。实验发现,石油焦基活性炭随着活性炭比表面积的增加,活性炭比电容逐渐增大;活性炭孔结构分布相同,随比表面积的增加,比电容线性增加,比表面积利用率降低。活性炭孔结构对比电容有较大的影响,30%KOH电解液可以进入活性炭中大于0.6nm的微孔,孔径越大,其比表面积利用率越高。  相似文献   

5.
《Materials Letters》2007,61(11-12):2362-2364
Activated carbons were previously modified with different sodium carbonate solutions and then, they were soaked in a calcium nitrate solution. This procedure allowed to precipitate calcium carbonate on the microporous carbons. Then, these solids were washed with abundant distillated water. These modified carbons were characterized by means of XRD, SEM, HRTEM and BET surface area measurements. XRD confirmed the presence of calcium carbonate species, while the surface area measurements indicated that microporous solids were partially blocked. SEM and HRTEM showed that precipitated calcium carbonate crystals were found on the surface of the activated carbon. These solids were tested as antacids in a synthetic gastric juice and they were able to neutralize it. A commercial compound formulated with calcium carbonate was used as a reference system.  相似文献   

6.
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.  相似文献   

7.
In this study, activated carbons were prepared from sugar beet bagasse, which is side product and waste in sugar plants, by chemical activation with ZnCl2. Influence of activation temperature was investigated on to pore structure. ZnCl2/sugar beet bagasse ratio (impregnation ratio) was selected as 1:1. The impregnated sample was raised to the activation temperature under N(2) (100ml/min) atmosphere with 10 degrees C/min heating rate and hold at this temperature for 1h. The activation temperature was varied over the temperature range of 400-900 degrees C. BET surface area values were determined in the range of 832-1697 m(2)/g. Under the experimental conditions, 500 degrees C was found to be the optimal condition for producing high surface area carbons with ZnCl2 activation. Sugar beet bagasse was suitable for preparation of activated carbon with essentially microporous structure. Activated carbon ash content was found in the range of 1.2-2.7 (%w/w d.b.). Activated carbon samples and raw material were characterized by XRD, FT-IR, DTA and TGA.  相似文献   

8.
中药渣制备活性炭及其工艺优化   总被引:1,自引:0,他引:1  
杨娟  丘克强 《新型炭材料》2012,27(4):294-300
以中药渣为原料,采用真空化学活化法制备活性炭,并以活性炭的亚甲基蓝和碘吸附值为优化指标,选用Doehlert设计安排实验,在合适的范围内,对影响ZnCl2活化法最重要的两个因素活化温度和浸渍比进行了优化。结果表明,在实验条件范围内,对于所有的响应,活化温度的影响均大于浸渍比,且两者对活性炭产率的影响都不大。得到的最优条件为活化温度474℃,浸渍比1.225,在此条件下制得活性炭的亚甲基蓝值和碘值分别为316 mg.g-1和994 mg.g-1,与理论模型计算值非常接近。和普通商品活性炭相比,用该实验方法所制活性炭具有更好的实际吸附效果。  相似文献   

9.
Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (S(BET)) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m(2)g(-1), respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon.  相似文献   

10.
Catalytic effects of carbon sorbents for mercury capture   总被引:6,自引:0,他引:6  
Activated carbon sorbents have the potential to be an effective means of mercury control in combustion systems. Reactions of activated carbons in flow systems with mercury and gas stream components were investigated to determine the types of chemical interactions that occur on the sorbent surface. The effects of carbon type, particle size, temperature, and reactive gases were studied. Sorption kinetics and capacities for lignite- and bituminous-based carbons were compared with those for catalytic carbons at temperatures of 107 degrees C, 150 degrees C, and 163 degrees C. In the air and baseline gas studies, the catalytic carbons exhibited far better sorption than the lignite- and bituminous-derived carbons. With the catalytic carbons, the greater sorption kinetics and capacity in an air stream or baseline gas composition compared with nitrogen provides a clear demonstration that O(2) is required in the gas stream for higher reactivities and capacities. Thus, a catalytic chemisorption mechanism predominates for the sorption of mercury at these conditions. The reaction kinetics are inversely proportional to the temperature, indicating that a preliminary physisorption step with mercury associating with a surface site is rate-determining. In synthetic flue gas streams containing HCl (50 ppm), the sorption kinetics of the catalytic carbon are slightly inferior to those of lignite-based carbon. Thus, the reaction is dominated by a different interaction, where HCl reacts with mercury on the carbon surface and the oxidation sites on the catalytic carbon apparently have no advantage. Granular and fine-particle carbons gave similar results in flue gas streams.  相似文献   

11.
Activated carbons with high surface area were prepared by phosphoric acid as activation agent and rice husks as precursors. It was found that the characteristics of the activated carbons were influenced not only by the preparation but also by the post-processing method. The high surface area of the activated carbons was prepared under the optimum condition (50% H3PO4 with impregnation ratio of 5:1, activation temperature of 500 °C, activation time of 0.5 h, wash water temperature of 100 °C). SiO2 content could affect the surface area of activated carbons, either. The lower SiO2 content of the activated carbons, the higher pore volume the carbons had. The SiO2 content was 11.2% when used the optimum condition. The explanation was that silicon element in rice husks reacted with H3PO4 to form silicon phosphate (SiP2O7), and it could be proved further by X-ray diffraction analysis, SiP2O7 could be removed by post-process.  相似文献   

12.
Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.  相似文献   

13.
煤基活性炭孔径分布的调控   总被引:6,自引:0,他引:6  
提出并研究了一种煤基活性炭孔径分布的调控方法及调控机理.将煤样与不同质量的KOH混合后炭化,分别对炭化料进行酸洗,以控制其中的钾含量,然后对酸洗料进行蒸汽活化,制成活性炭.通过对所制活性炭进行氮气吸附实验、扫描电镜及能谱分析和吸附能力表征实验后发现:改变KOH加入量和采用质量浓度为5%的盐酸对炭化料进行酸洗,能够改变炭化料中的钾含量;随着KOH含量的提高,活性炭的口发附能力逐渐增强,平均孔径从2.379 nm逐渐增大到2.636nm,同时孔径分布由以微孔为主逐渐向以中孔为主转移,其中孔含量由30.9%提高到46.1%.  相似文献   

14.
椰壳纤维基高比表面积中孔活性炭的制备   总被引:3,自引:0,他引:3  
以椰壳纤维为原料,制备高比表面积中孔活性炭.采用正交试验设计实验方案,研究KOH和NaOH复合活化法制备活性炭的实验方案与工艺条件.考察了活化剂配比、炭化温度、活化温度、时间和升温速率对所制活性炭吸附性能的影响.在最佳工艺条件下,所制活性炭的比表面积达到2032m2/g,中孔发达,特别是2nm~4nm的,中孔比例达到28%.活性炭对的碘吸附值为1435mg/g,亚甲基蓝吸附值为495mg/g,产率为49%.  相似文献   

15.
Diclofenac (DCF) has been treated in water with ozone in the presence of various activated carbons. Activated carbon-free ozonation or single ozonation leads to a complete degradation of DCF in less than 15 min while in the presence of activated carbons higher degradation rates of TOC and DCF are noticeably achieved. Among the activated carbons used, P110 Hydraffin was found the most suitable for the catalytic ozonation of DCF. The influence of pH was also investigated. In the case of the single ozonation the increasing pH slightly increases the TOC removal rate. This effect, however, was not so clear in the presence of activated carbons where the influence of the adsorption process must be considered. Ecotoxicity experiments were performed, pointing out that single ozonation reduces the toxicity of the contaminated water but catalytic ozonation improved those results. As far as kinetics is concerned, DCF is removed with ozone in a fast kinetic regime and activated carbon merely acts as a simple adsorbent. However, for TOC removal the ozonation kinetic regime becomes slow. In the absence of the adsorbent, the apparent rate constant of the mineralization process was determined at different pH values. On the other hand, determination of the rate constant of the catalytic reaction over the activated carbon was not possible due to the effect of mass transfer resistances that controlled the process rate at the conditions investigated.  相似文献   

16.
Activated carbons were developed by phosphoric acid activation of sawdust from Prosopis ruscifolia wood, an indigenous invasive species of degraded lands, at moderate conditions (acid/precursor ratio=2, 450 degrees C, 0.5h). For in situ modification of their characteristics, either a self-generated atmosphere or flowing air was used. The activated carbons developed in the self-generated atmosphere showed higher BET surface area (2281m2/g) and total pore volume (1.7cm3/g) than those obtained under flowing air (1638m2/g and 1.3cm3/g). Conversely, the latter possessed a higher total amount of surface acidic/polar oxygen groups (2.2meq/g) than the former (1.5meq/g). To evaluate their metal sorption capability, adsorption isotherms of Cu(II) ion from model solutions were determined and properly described by the Langmuir model. Maximum sorption capacity (Xm) for the air-derived carbons (Xm=0.44mmol/g) almost duplicated the value for those obtained in the self-generated atmosphere (Xm=0.24mmol/g), pointing to a predominant effect of the surface functionalities on metal sequestering behaviour. The air-derived carbons also demonstrated a superior effectiveness in removing Cd(II) ions as determined from additional assays in equilibrium conditions. Accordingly, effective phosphoric acid-activated carbons from Prosopis wood for toxic metals removal from wastewater may be developed by in situ modification of their characteristics operating under flowing air.  相似文献   

17.
以核桃壳为原料,经水热炭化-KOH活化制备活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)及X射线光电子能谱(XPS)等手段系统研究核桃壳活性炭的微观结构及表面化学性质,并利用恒流充放电、循环伏安等探讨其对应电极材料的电化学性能。研究表明,在碱碳比为3∶1、活化温度为800℃、活化时间为1h的条件下,核桃壳水热炭经KOH活化可制备出比表面积为1 236m2/g、总孔容为0.804cm3/g、中孔比例为38.3%的活性炭。该核桃壳活性炭用作电极材料在KOH电解液中具有优异的电化学特性,其在50mA/g电流密度下的比电容可达251F/g,5 000mA/g电流密度下的比电容为205F/g,且具有良好的循环稳定性,1 000次循环后比电容保持率达92.4%,是一种比较理想的超级电容器电极材料。核桃壳活性炭优异的电化学性能与其相互贯通的层次孔结构和独特的含氧表面密切相关。  相似文献   

18.
Activated carbons have been prepared by a two-step physical activation with steam at different burn-off levels to study the porosity development and its effect in zinc adsorption from aqueous solutions. The main material used was the residual from the extraction with solvent of the kernel-oil [solvent extracted olive pulp (SEOP)]. Olive, apricot and peach stone have been also used as different precursors. The products were characterized by N2 at 77K adsorption, Hg porosimetry and iodine number determination. The influence of surface complexes and pH has been investigated in an attempt to elucidate the adsorption phenomena. The effect of different treatments [demineralization with H2SO4 and oxidation with (NH4)2S2O8] was also evaluated for the adsorption of zinc species.Both basic and acidic carbons, originated from SEOP, show remarkable adsorption ability at solution pH=7. Their adsorption ability mainly depends on the content and nature of functional surface groups, the ash content of the precursors and the pH of the solution. These activated carbons were proved to be efficient adsorbents for the removal of water pollutants and contaminants.  相似文献   

19.
ABSTRACT

Activated carbons series were produced from the orange peel by chemical activation using strontium chloride (SrCl2) and boric acid (H3BO3). The activation temperature effects and type of activation reagents on the surface and chemical properties of activated carbon have been investigated. The surface area of the activated carbons is 577 and 290 m2 g?1 for H3BO3 and SrCl2 activation, respectively. An increase in the temperature for both H3BO3 and SrCl2 led to a decrease in the yields of the activated carbons. The yield of H3BO3 series is higher than the yield of SrCl2. The obtained activated carbons were heteroporous with the mesopore. Orange peel can be used alternative waste biomass for the mesoporous activated carbon productions. Samples were characterized by XRD, SEM, FTIR, and TGA analysis.  相似文献   

20.
Porous carbons     
Satish M. Manocha 《Sadhana》2003,28(1-2):335-348
Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5-0.8 cm3/gm and surface areas of 700–1800 m2/gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2/gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号