首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Load ratio effects are of prime concern when modeling of fatigue crack growth (FCG) rate is required as a prerequisite for a reliable life prediction. The majority of research efforts regarding the load ratio effects are based on Elber's ΔKeff approach. However, there are intrinsic difficulties encountered with its consistent application to FCG prediction. In this paper two popular crack-growth-life prediction codes FASTRAN and AFGROW are modified utilizing the enhanced partial crack closure model. The proposed utilization aggregates apparent closure mechanisms involved and demonstrates a better correlation and a significant scatter reduction of FCG data taken from literature, especially in the near-threshold region.  相似文献   

2.
Two full-field macroscale methods are introduced for estimating fatigue crack opening levels based on digital image correlation (DIC) displacement measurements near the crack tip. Crack opening levels from these two full-field methods are compared to results from a third (microscale) method that directly measures opening of the crack flanks immediately behind the crack tip using two-point DIC displacement gages. Of the two full-field methods, the first one measures effective stress intensity factors through the displacement field (over a wide region behind and ahead of the crack tip). This method reveals crack opening levels comparable to the limiting values (crack opening levels far from the crack tip) from the third method (microscale). The second full-field method involves a compliance offset measurement based on displacements obtained near the crack tip. This method delivers results comparable to crack tip opening levels from the microscale two-point method. The results of these experiments point to a normalized crack tip opening level of 0.35 for R ∼ 0 loading in grade 2 titanium. This opening level was found at low and intermediate ΔK levels. It is shown that the second full-field macroscale method indicates crack opening levels comparable to surface crack tip opening levels (corresponding to unzipping of the entire crack). This indicates that effective stress intensity factors determined from full-field displacements could be used to predict crack opening levels.  相似文献   

3.
Numerical studies play a major role in the understanding and prediction of plasticity induced crack closure (PICC). However, the available numerical models can be considered simplifications of reality as they consider discrete crack propagations, relatively high fatigue crack growth rates (FCGR), sharp cracks, and propagation occurring at well-defined loads. Besides, there are a great number of numerical and physical parameters affecting the predictions of PICC. The aim of this paper is to discuss the numerical study of PICC. The numerical parameters affecting the accuracy of the numerical simulations, and the dependent parameters used to characterise the plastic wake and the closure level, are identified. The influence of the radial size of crack front elements and crack propagation is analysed. An extrapolation model is proposed, with excellent results. An intrinsic uncertainty is associated with the number of load cycles between crack increments and the definition of crack closure level. Finally, the effect of the stress ratio (R) on crack closure level is analysed.  相似文献   

4.
Computations of fatigue crack growth with a first-order strain gradient plasticity (SGP) model and an irreversible cohesive zone model are reported. SGP plays a significant role in the model predictions and leads to increased fatigue crack growth rates relative to predictions with classical plasticity. Increased magnitudes of tractions and material separation at the crack tip together with reduced crack closure appear as the cause for accelerated crack growth in SGP. Under plane strain conditions SGP appears as an essential feature of the development of the crack closure zone. Size effects are explored relative to changes in internal material length scale as well as to structural length scales.  相似文献   

5.
The effect of loading parameters on fatigue crack growth has been explained using the concept of crack closure. Plasticity induced crack closure (PICC) is linked to the crack tip plastic deformation, which becomes residual with crack propagation. The objective here is to identify the main mechanisms behind PICC, and for that different loading cases were considered namely overloads and load blocks. An analytical model was used to isolate the effect of residual plastic deformation on PICC, however significant differences were obtained relatively to finite element results. A second mechanism, which is crack tip blunting, was used to explain the transient behaviour observed after overloads and load blocks. For overloads and low–high load sequences there is a sudden increase of crack tip blunting with load increase which explains the sudden decrease of crack opening level. For high–low load sequences there is a sudden decrease of crack tip blunting which enhances the effect of residual plastic wake. Finally, the partial closure concept was tested looking to non-linear crack tip parameters but no evidences of Donald’s effect were found for the material studied.  相似文献   

6.
The mean load of a cyclic loading has a large effect on fatigue crack growth rates in metallic materials and bonded joints. In metallic structures, this effect has been attributed to plasticity-induced crack closure, but little is known about the mechanism responsible for this mean load effect on fatigue crack growth in adhesively bonded joints. This paper presents a computational investigation of the plasticity-induced crack closure mechanism affecting disbond growth in adhesively bonded joints under fatigue loading. The results show that the ratios of crack-opening and crack-closure are approximately independent of the level of plastic constraint, indicated by the ratio between the plastic zone size and the adhesive thickness. An effective strain-energy release rate parameter, which accounts for the crack closure behaviour, has been developed as a new correlating parameter for disbond growth. Comparisons with the experimental results pertinent to four different adhesive bonded joints reveal that this new correlating parameter is capable of unifying the fatigue growth rates by eliminating the effect of mean loads.  相似文献   

7.
The effects of plane strain plasticity induced crack closure on fatigue cracks located at the interface of dissimilar steel materials are presented using finite element modelling. Based on the study, it has been observed that bimaterial cracks produced unsymmetrical residual plastic strains and crack profiles in the crack wakes. It is seen that Young’s modulus and yield stress mismatch have profound effects on the development of unsymmetrical residual plastic strain and crack profiles, whereas the effect of Poisson’s ratio is insignificant. However, it has been found that for the material properties considered, low value of crack closure levels have been identified.  相似文献   

8.
The level of plasticity induced crack closure (PICC) is greatly affected by stress state. Under plane strain conditions, however, the level and even the existence of PICC still are controversial. The objective here is to study the influence of the main numerical parameters on plane strain PICC, namely the total crack propagation, the number of load cycles between crack increments, the finite element mesh and the parameter used to quantify PICC. The PICC predictions were included in a parallel numerical study of crack propagation, in order to quantify the impact of plane strain values on fatigue life. The results indicate that literature may be overestimating plane strain PICC due to incorrect numerical parameters. The number of load cycles usually considered is unrealistically small, and its increase was found to vanish crack closure, particularly for kinematic hardening. This effect was linked to the ratcheting effect observed at the crack tip. The total crack increment, Δa, must be large enough to obtain stabilized PICC values, but this may imply a huge numerical effort particularly for 3D models. The size of crack tip plastic zone may be overestimated in literature, which means that the meshes used may be too large. Additionally, the crack propagation study showed that the plane strain PICC has usually a dominant effect on fatigue life, and plane stress PICC is only relevant for relatively thin geometries.  相似文献   

9.
Crack closure delays the intrinsic mechanisms responsible for crack growth, therefore, it must be considered in fatigue crack growth modelling. The objective of this work is to develop a numerical procedure to predict crack closure induced by plasticity. First the crack closure was experimentally measured on M(T) 6082‐T6 aluminium alloy specimens of 3 mm thickness. A pin microgauge was used with the compliance technique. Then different parameters of the numerical procedure were analysed, namely the finite element mesh and the crack propagation scheme. The size of crack‐tip elements has an important influence and it is recommended to be of the same order of cyclic plastic zone. Crack‐opening levels only 10% lower than experimental results were obtained considering kinematic hardening and two load cycles in each increment.  相似文献   

10.
Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, some authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle were investigated. It was demonstrated that: (i) LEFM concepts are applicable to the problem under study; (ii) the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; (iii) the ΔKeff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; and (iv) the analysis of remote compliance is the best numerical parameter to quantify the crack opening level. Therefore the crack closure concept seems to be valid. Additionally, the curves of crack tip parameters against stress intensity factor range obtained without contact may be seen as master curves.  相似文献   

11.
Numerical models have been successfully developed to predict plasticity induced crack closure (PICC). However, despite the large research effort a full understanding of the links between physical parameters, residual plastic wake and PICC has not been achieved yet. The plastic extension of material behind crack tip, Δyp, obtained by the integration of vertical plastic deformation perpendicularly to crack flank, is proposed here to quantify the residual plastic field. The values of Δyp and PICC were obtained numerically in a M(T) specimen using the finite element method. An excellent correlation was found between PICC and Δyp which indicates that this parameter controls the phenomenon, and can be used to quantify the effect of physical parameters. An empirical model was developed to predict PICC assuming that the residual plastic field is a set of vertical plastic wedges, that the linear superposition principle applies and that the influence of a particular wedge exponentially decreases with distance to crack tip. The model was applied successfully to predict PICC for different residual plastic fields which provided an additional validation of Δyp as the parameter controlling PICC.  相似文献   

12.
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman’s crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.  相似文献   

13.
3D finite element method is utilized to analyze the plasticity-induced crack closure (PICC) phenomenon in a cracked plate under constant-amplitude cyclic loading. To accurately capture the PICC process the choice of material model employed is of significant importance. This paper considers a relatively new model, the Ellyin-Xia elastic-plastic constitutive relations, and the more widely used kinematic hardening model. The study shows considerable difference in the results obtained while employing the two material models. Experimental results support the predictions by the Ellyin-Xia material model.  相似文献   

14.
The study presented in this paper analyses the mechanical effects of material constitutive modelling on the numerical prediction of plasticity induced crack closure. With this aim, an elastoplastic stress analysis of a MT specimen was conducted using an implicit three dimensional finite element program. Two materials were studied: an Aluminium Alloy and a High Strength Steel. Several constitutive models were used to describe their cyclic behaviour, ranging from pure isotropic hardening or pure kinematic hardening models to combined isotropic plus kinematic hardening models. Numerical results showed clear differences in plastic behaviour and crack closure predictions for the different types of mechanical models used to describe the mechanical behaviour of the materials. The mechanisms of opening stress stabilization, usually observed in numerical simulations, are explained in this work by analysing the evolution of plastic deformation along the crack flanks. The same type of plastic deformation stabilization behaviour was observed independently of the hardening model in use.  相似文献   

15.
A single Mode II load cycle, large enough to create residual displacements, decreases the subsequent Mode I crack growth rate. The distance for Mode I crack growth rate to fully recover, i.e., revert to the same da/dN as before Mode II load, is much longer than Mode II plastic zone size. The higher Mode II load, the larger is the reduction in growth rate and the longer the recovery distance. Higher Mode I R-ratio means smaller reduction in growth rate. Above a certain R-ratio, no reduction occurs at all. In the present study it is found that the reduction in growth rate is solely caused by crack closure due to tangential displacement of crack-surface irregularities that induce a surface mismatch between the upper and lower crack faces. The mechanism is called Mode II-induced crack closure. A model based on both analytical and experimental results is developed in order to estimate the degree of Mode II-induced crack closure after a Mode II load.  相似文献   

16.
In this paper R-ratio effects on fatigue crack growth near threshold region of a metastable austenitic stainless steel (MASS) in two different conditions, i.e. annealed and cold rolled, is investigated. The authors present two approaches to correlate FCGR data for R = 0.1, 0.3, 0.5, 0.7 and Kmax = 23 MPa√m using a two-parameters approach (ΔK, Kmax and α in Kujawski’s model) and crack closure model (using Elber’s Kop and in Donald’s ACRn2 approaches). The Kop and ACRn2 were experimentally measured on a single edge tension specimens. The Kop measurements were performed using a modified method and based on ASTM standards. While the two driving force approaches correlate data well in the Paris region, they fail to correlate them in the threshold region. However, this correlation can be improved in the threshold region when a different α value from the Paris region is used. The authors indicated that two different mechanisms operate; one in the Paris region and another in the near threshold. Hence, they proposed to combine the two-parameter and crack closure approaches where ΔK is replaced by ΔKeff (estimated by a new method proposed in this paper), which is shown to correlate the FCGR data for different stress ratios for annealed steel. The correlation for cold rolled condition shows improvement with the new approach but is not as good as for the annealed one. The author further suggests to modify Kmax in the two-parameter approach.  相似文献   

17.
Plasticity-induced crack closure is an observed phenomenon during fatigue crack growth. However, accurate determination of fatigue crack closure has been a complex task for years. It has been approached by means of experimental and numerical methods. The finite element method (FEM) has been the principal numerical tool employed. In this paper the results of a broad study of fatigue crack closure in plane stress and plane strain by means of FEM are presented. The effect of three principal factors has been analysed in depth, the maximum load, the crack length and the stress ratio. It has been found that the results are independent of maximum load and the crack length, and there exists a direct influence of the stress ratio. This relation has been numerically correlated and compared with experimental results. Differences have also been established between opening and closure points and between the different criteria employed to compute crack closure.  相似文献   

18.
In this work, three classes of mechanisms that can cause load sequence effects on fatigue crack growth are discussed: mechanisms acting before, at or after the crack tip. After reviewing the crack closure idea, which is based on what happens behind the crack tip, quantitative models are proposed to predict the effects at the crack tip due to crack bifurcation. To predict the behavior ahead of the crack tip, a damage accumulation model is proposed. In this model, fatigue cracking is assumed caused by the sequential failure of volume elements or tiny εN specimens in front of the crack tip, calculated by damage accumulation concepts. The crack is treated as a sharp notch with a small, but not zero radius, avoiding the physically unrealistic singularity at its tip. The crack stress concentration factor and a strain concentration rule are used to calculate the notch root strain and to shift the origin of a modified HRR field, resulting in a non-singular model of the strain distribution ahead of the crack tip. In this way, the damage caused by each load cycle, including the effects of residual stresses, can be calculated at each element ahead of the crack tip using the correct hysteresis loops caused by the loading. The proposed approach is experimentally validated and extended to predict fatigue crack growth under variable amplitude loading, assuming that the width of the volume element broken at each cycle is equal to the region ahead of the crack tip that suffers damage beyond its critical value. The reasonable predictions of the measured fatigue crack growth behavior in steel specimens under service loads corroborate this simple and clear way to correlate da/dN and εN properties.  相似文献   

19.
The importance of compressive stresses on fatigue crack propagation rate   总被引:2,自引:0,他引:2  
This paper is concerned with the importance of compressive stresses on crack propagation rate. In a previous paper, namely ‘Crack Closure Inadequacy at Negative Stress Ratios’, Int. Journal of Fatigue, 26, 2004, pp. 241–252, was demonstrated the inadequacy of the crack closure concept and ΔKeff, at a negative stress ratio, R=−1, to predict crack propagation rate. It that paper was verified that, at negative stress ratios, crack closure changes with Pmax, for the same R ratio. The main conclusion was about plastic properties and mainly cyclic plastic properties, the Bauschinger effect included, on crack propagation when compressive stresses exist. It was then suggested that in the place of the crack closure concept, another concept based on plasticity should be used to explain fatigue crack propagation.In this paper, instead of working with the same negative R ratio (R=−1), a study on the behavior of crack propagation rate as a function of R ratio, from negative to positive stress ratios, is made. Both the effect of Pmax and of R ratio is taken into consideration. Measurements of roughness and of crack opening loads are made, in order to verify their influence on crack propagation rate. Different materials, in order to cover different cyclic plastic properties and different sensitivities to roughness are studied (Ck45-cyclic hardening; Ti6Al4V-cyclic softening, and aluminum, Al 7175-cyclically neutral) are studied. Aluminium alloys and titanium alloys are considered to be sensitive to roughness induced crack closure (RICC) while steels are more dependent on plastic properties (PICC).In this study it is emphasized the importance of the compressive part of the cycle, and of cyclic plastic properties, on crack propagation rate. It is reassessed the inadequacy of crack closure concept and ΔKeff to describe crack propagation rate, at negative stress ratios. It is also verified that models based solely on extrinsic properties of materials, like da/dN−ΔK or da/dN−ΔK (Kmax) should also incorporate intrinsic properties of the materials in order to properly correlate fatigue crack growth.  相似文献   

20.
In this paper a numerical simulation of plasticity-induced fatigue crack closure is performed using the finite element method. Emphasis is placed on the crack growth scheme usually adopted for modelling fatigue crack growth in crack closure problems. The number of load cycles between node releases usually reported in the literature has been, in general, one or two. The present work shows that increasing the number of load cycles between node releases has a strong effect on the opening stresses, particularly, under plane strain conditions and 3D fatigue cracks, in contrast plane stress shows little variation with increasing number of load cycles. This investigation also suggests that ratchetting may take place close to the crack tip in both plane strain and 3D crack problems. The problem of discontinuous crack closure under plane strain conditions, often reported in the literature, is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号