首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A contact method with friction for the multi‐dimensional Lagrangian step in multi‐material arbitrary Lagrangian–Eulerian (ALE) formulations is presented. In our previous research, the extended finite element method (X‐FEM) was used to create independent fields (i.e. velocity, strain rate, force, mass, etc.) for each material in the problem to model contact without friction. The research presented here includes the extension to friction and improvements to the accuracy and robustness of our previous study. The accelerations of the multi‐material nodes are obtained by coupling the material force and mass fields as a function of the prescribed contact; similarly, the velocities of the multi‐material nodes are recalculated using the conservation of momentum when the prescribed contact requires it. The coupling procedures impose the same nodal velocity on the coupled materials in the direction normal to their interface during the time step update. As a result, the overlap of materials is prevented and unwanted separation does not occur. Three different types of contacts are treated: perfectly bonded, frictionless slip, and slip with friction. Example impact problems are solved and the numerical solutions are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an application of the extended finite element method (X‐FEM) to the analysis of fracture in piezoelectric materials. These materials are increasingly used in actuators and sensors. New applications can be found as constituents of smart composites for adaptive electromechanical structures. Under in service loading, phenomena of crack initiation and propagation may occur due to high electromechanical field concentrations. In the past few years, the X‐FEM has been applied mostly to model cracks in structural materials. The present paper focuses at first on the definition of new enrichment functions suitable for cracks in piezoelectric structures. At second, generalized domain integrals are used for the determination of crack tip parameters. The approach is based on specific asymptotic crack tip solutions, derived for piezoelectric materials. We present convergence results in the energy norm and for the stress intensity factors, in various settings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on the introduction of a lumped mass matrix for enriched elements, which enables one to use a pure explicit formulation in X‐FEM applications. A proof of stability for the 1D and 2D cases is given. We show that if one uses this technique, the critical time step does not tend to zero as the support of the discontinuity reaches the boundaries of the elements. We also show that the X‐FEM element's critical time step is of the same order as that of the corresponding element without extended degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper introduces a new algorithm to define a stable Lagrange multiplier space to impose stiff interface conditions within the context of the extended finite element method. In contrast to earlier approaches, we do not work with an interior penalty formulation as, e.g. for Nitsche techniques, but impose the constraints weakly in terms of Lagrange multipliers. Roughly speaking a stable and optimal discrete Lagrange multiplier space has to satisfy two criteria: a best approximation property and a uniform inf–sup condition. Owing to the fact that the interface does not match the edges of the mesh, the choice of a good discrete Lagrange multiplier space is not trivial. Here we propose a new algorithm for the local construction of the Lagrange multiplier space and show that a uniform inf–sup condition is satisfied. A counterexample is also presented, i.e. the inf–sup constant depends on the mesh‐size and degenerates as it tends to zero. Numerical results in two‐dimensional confirm the theoretical ones. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper develops two aspects improving crack propagation modelling with the X‐FEM method. On the one hand, it explains how one can use at the same time a regular structured mesh for a precise and efficient level set update and an unstructured irregular one for the mechanical model. On the other hand, a new numerical scheme based on the X‐FEM method is proposed for dynamic elastic–plastic situations. The simulation results are compared with two experiments on PMMA for which crack speed and crack path are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of the present paper is to study the accuracy and the robustness of the evaluation of Jk‐integrals in linear elastic fracture mechanics using the extended finite element method (X‐FEM) approach. X‐FEM is a numerical method based on the partition of unity framework that allows the representation of discontinuity surfaces such as cracks, material inclusions or holes without meshing them explicitly. The main focus in this contribution is to compare various approaches for the numerical evaluation of the J2‐integral. These approaches have been proposed in the context of both classical and enriched finite elements. However, their convergence and the robustness have not yet been studied, which are the goals of this contribution. It is shown that the approaches that were used previously within the enriched finite element context do not converge numerically and that this convergence can be recovered with an improved strategy that is proposed in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we develop lower‐dimensional interface elements to represent preexisting fractures in rock material, focusing on finite element analysis of coupled hydro‐mechanical problems in discrete fractures–porous media systems. The method adopts local enrichment approximations for a discontinuous displacement and a fracture relative displacement function. Multiple and intersected fractures can be treated with the new scheme. Moreover, the method requires less mesh dependencies for accurate finiteelement approximations compared with the conventional interface element method. In particular, for coupled problems, the method allows for the use of a single mesh for both mechanical and other related processes such as flow and transport. For verification purposes, several numerical examples are examined in detail. Application to a coupled hydro‐mechanical problem is demonstrated with fluid injection into a single fracture. The numerical examples prove that the proposed method produces results in strong agreement with reference solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A high‐order generalized finite element method (GFEM) for non‐planar three‐dimensional crack surfaces is presented. Discontinuous p‐hierarchical enrichment functions are applied to strongly graded tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack arbitrarily located within a finite element (FE) mesh and thus the proposed method allows fully automated fracture analysis using an existing FE discretization without cracks. We also propose a crack surface representation that is independent of the underlying GFEM discretization and controlled only by the physics of the problem. The representation preserves continuity of the crack surface while being able to represent non‐planar, non‐smooth, crack surfaces inside of elements of any size. The proposed representation also provides support for the implementation of accurate, robust, and computationally efficient numerical integration of the weak form over elements cut by the crack surface. Numerical simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors along non‐planar curved crack fronts and the robustness of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
An analogy with rigid plasticity is used to develop a constitutive framework for quasi‐static frictional contact between finitely deforming solids. Within this setting, a Lagrange multiplier method is used to impose a sharp distinction between stick and slip. The scope of the multipliers is limited by a constitutively defined ‘yield’ function and a finite element‐based predictor–corrector scheme is employed to efficiently determine the regions of stick and slip and the associated tractions. Selected simulations of planar quasi‐static problems are presented to validate the method and illustrate its capabilities. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with the numerical modelling of cracks in the dynamic case using the extended finite element method. More precisely, we are interested in explicit algorithms. We prove that by using a specific lumping technique, the critical time step is exactly the same as if no crack were present. This somewhat improves a previous result for which the critical time step was reduced by a factor of square root of 2 from the case with no crack. The new lumping technique is obtained by using a lumping strategy initially developed to handle elements containing voids. To be precise, the results obtained are valid only when the crack is modelled by the Heaviside enrichment. Note also that the resulting lumped matrix is block diagonal (blocks of size 2 × 2). For constant strain elements (linear simplex elements) the critical time step is not modified when the element is cut. Thanks to the lumped mass matrix, the critical time step never tends to zero. Moreover, the lumping techniques conserve kinetic energy for rigid motions. In addition, tensile stress waves do not propagate through the discontinuity. Hence, the lumping techniques create neither error on kinetic energy conservation for rigid motions nor wave propagation through the crack. Both these techniques will be used in a numerical experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A direct constraint technique, based on the hybrid‐Trefftz finite element method, is first presented to solve elastic contact problems without friction. For efficiency, static condensation is employed to condense a large model down to a smaller one which involves nodes within the potential contact surfaces only. This model can remarkably reduce computational time and effort. Subsequently, the contact interface equation is constructed by introducing the contact conditions of compatibility and equilibrium. Based on the formulation developed, a general solution strategy, which is applicable to the well‐known three classical situations (receding, conforming and advancing) is developed. Finally, three typical examples related to the three situations mentioned are provided to verify the reliability and applicability of the approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Numerical analysis of linear visco‐elastic materials requires robust and stable methods to integrate partial differential equations in both space and time. In this paper, symmetric space–time finite element operators are derived for the first time for elementary linear elastic spring and linear viscous dashpot. These can thereafter be assembled in parallel and in series to simulate an arbitrarily complex linear visco‐elastic behaviour. The flexibility of the proposed method allows the formulation of the behaviour, which closely reflects physical processes. An efficient algorithm is proposed to use the generated elementary matrices in a way that is comparable with finite difference schemes, in terms of both processor and memory costs. This unconditionally stable and convergent procedure is equally valid for space domains in which geometry or material properties evolve with time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we propose a segment‐to‐segment contact formulation (mortar‐based) that uses Lagrange's multipliers to establish the contact between crack faces when modeled with the extended finite element method (X‐FEM) in 2D problems. It is shown that, in general, inaccuracies arise when the contact is formulated following a point‐to‐point approach. This is due to the non‐linear character of the X‐FEM interpolation along the crack faces that leads to crack face interpenetration. However, the segment‐to‐segment approach optimizes the fulfilment of the contact constraints along the whole crack segment, and in practice the contact is modeled precisely. Convergence studies for mesh sequences have been performed, showing the advantages of the proposed methodology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
We propose the study of a posteriori error estimates for time‐dependent generalized finite element simulations of heat transfer problems. A residual estimate is shown to provide reliable and practically useful upper bounds for the numerical errors, independent of the heuristically chosen enrichment functions. Two sets of numerical experiments are presented. First, the error estimate is shown to capture the decrease in the error as the number of enrichment functions is increased or the time discretization refined. Second, the estimate is used to predict the behaviour of the error where no exact solution is available. It also reflects the errors incurred in the poorly conditioned systems typically encountered in generalized finite element methods. Finally, we study local error indicators in individual time steps and elements of the mesh. This creates a basis towards the adaptive selection and refinement of the enrichment functions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The paper reports a detailed analysis on the numerical dispersion error in solving 2D acoustic problems governed by the Helmholtz equation using the edge‐based smoothed finite element method (ES‐FEM), in comparison with the standard FEM. It is found that the dispersion error of the standard FEM for solving acoustic problems is essentially caused by the ‘overly stiff’ feature of the discrete model. In such an ‘overly stiff’ FEM model, the wave propagates with an artificially higher ‘numerical’ speed, and hence the numerical wave‐number becomes significantly smaller than the actual exact one. Owing to the proper softening effects provided naturally by the edge‐based gradient smoothing operations, the ES‐FEM model, however, behaves much softer than the standard FEM model, leading to the so‐called very ‘close‐to‐exact’ stiffness. Therefore the ES‐FEM can naturally and effectively reduce the dispersion error in the numerical solution in solving acoustic problems. Results of both theoretical and numerical studies will support these important findings. It is shown clearly that the ES‐FEM suits ideally well for solving acoustic problems governed by the Helmholtz equations, because of the crucial effectiveness in reducing the dispersion error in the discrete numerical model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, four‐node incompatible elements with quadratic completeness in the physical space are developed for plane and axisymmetric problems. Various revision techniques of the incompatible strain matrix or shape function are proposed to guarantee the incompatible elements to pass the constant stress patch test. In contrast with other elements in the same level, the present one gives reasonable stress solutions without any stress recovery such as the bilinear extrapolation and least square approximation. Numerical examples are given to investigate the accuracy, sensitivity to mesh distortion and locking in the incompressible calculation of the present method when irregular coarse meshes are used. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The non‐penetration condition in contact problems is traditionally based on the classical Lagrange multiplier method. This method makes extensive use of modelling details of the contacting bodies for contact enforcement as the contact surface meshes are in general non‐matching. To deal with this problem we introduce a novel element in the Lagrange multiplier approach of contact modelling, namely, a contact frame placed in between contacting bodies. It acts as a medium through which contact forces are transferred without violating equilibrium in the contact domain for discrete contact models. Only nodal information of the contacting bodies is required which makes the proposed contact enforcement generic. The contact frame has its own independent freedoms, which allows the formulation to pass contact patch tests by design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Finite deformation contact problems are associated with large sliding in the contact area. Thus, in the discrete problem a slave node can slide over several master segments. Standard contact formulations of surfaces discretized by low order finite elements leads to sudden changes in the surface normal field. This can cause loss of convergence properties in the solution procedure and furthermore may initiate jumps in the velocity field in dynamic solutions. Furthermore non‐smooth contact discretizations can lead to incorrect results in special cases where a good approximation of the contacting surfaces is needed. In this paper a smooth contact discretization is developed which circumvents most of the aformentioned problems. A smooth deformed surface with no slope discontinuities between segments is obtained by a C1‐continuous interpolation of the master surface. Different forms of discretizations are possible. Among these are Bézier, Hermitian or other types of spline interpolations. In this paper we compare two formulations which can be used to obtain smooth normal and tangent fields for frictional contact of deformable bodies. The formulation is developed for two‐dimensional applications and includes finite deformation behaviour. Examples show the performance of the new discretization technique for contact. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present a comparative study of the boundary element method (BEM) and the finite element method (FEM) for analysis of Signorini contact problems in elastostatics with Coulomb's friction law. Particularities of each method and comparison with the penalty method are discussed. Numerical examples are included to demonstrate the present formulations and to highlight its performance.  相似文献   

20.
In this paper, we analyse the p‐convergence of a new version of the generalized finite element method (generalized FEM or GFEM) which employs mesh‐based handbook functions which are solutions of boundary value problems in domains extracted from vertex patches of the employed mesh and are pasted into the global approximation by the partition of unity method (PUM). We show that the p‐version of our GFEM is capable of achieving very high accuracy for multiscale problems which may be impossible to solve using the standard FEM. We analyse the effect of the main factors affecting the accuracy of the method namely: (a) The data and the buffer included in the handbook domains, and (b) The accuracy of the numerical construction of the handbook functions. We illustrate the robustness of the method by employing as model problem the Laplacian in a domain with a large number of closely spaced voids. Similar robustness can be expected for problems of heat‐conduction and elasticity set in domains with a large number of closely spaced voids, cracks, inclusions, etc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号