首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bending problems of Mindlin–Reissner plate, the resultant forces often vary dramatically within a narrow range near free and soft simply‐supported (SS1) boundaries. This is so‐called the edge effect or the boundary layer effect, a challenging problem for conventional finite element method. In this paper, an effective finite element method for analysis of such edge effect is developed. The construction procedure is based on the hybrid displacement function (HDF) element method [1], a simple hybrid‐Trefftz stress element method proposed recently. What is different is that an additional displacement function f related to the edge effect is considered, and its analytical solutions are employed as the additional trial functions for the first time. Furthermore, the free and the SS1 boundary conditions are also applied to modify the element assumed resultant fields. Then, two new special elements, HDF‐P4‐Free and HDF‐P4‐SS1, are successfully constructed. These new elements are allocated along the corresponding boundaries of the plate, while the other region is modeled by the usual HDF plate element HDF‐P4‐11 β [1]. Numerical tests demonstrate that the present method can effectively capture the edge effects and exactly satisfy the corresponding boundary conditions by only using relatively coarse meshes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A deviatoric hybrid element approach, in which the deviatoric stress σ′, the pressure p and the displacement u are independently dealt with as the element variables, is suggested. The present approach is naturally universal for compressible and fully incompressible mediums. Moreover, it can be extended to the simulation of Stokes flow directly. The resulting hybrid model is able to meet the zero volumetric strain constraint in terms of the incompatible displacement mode only. Therefore an incompressible elimination can be carried out within an individual element, and the complex system elimination for nodal displacements is then avoided. The present 3‐field hybrid model maintains the important features of current hybrid stress elements—finally resulting in a set of displacement‐type discrete equations which can be easily solved, while not a set of u ‐p mixed‐type equations resulted. Regarding the numerical stability of the element, an effective strategy is offered to suppress all the zero energy modes hidden in the model. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The unsymmetric finite element method is a promising technique to produce distortion‐immune finite elements. In this work, a simple but robust 4‐node 12‐DOF unsymmetric quadrilateral membrane element is formulated. The test function of this new element is determined by a concise isoparametric‐based displacement field that is enriched by the Allman‐type drilling degrees of freedom. Meanwhile, a rational stress field, instead of the displacement one in the original unsymmetric formulation, is directly adopted to be the element's trial function. This stress field is obtained based on the analytical solutions of the plane stress/strain problem and the quasi‐conforming technique. Thus, it can a priori satisfy related governing equations. Numerical tests show that the presented new unsymmetric element, named as US‐Q4θ, exhibits excellent capabilities in predicting results of both displacement and stress, in most cases, superior to other existing 4‐node element models. In particular, it can still work very well in severely distorted meshes even when the element shape deteriorates into concave quadrangle or degenerated triangle.  相似文献   

4.
The hybrid‐mixed assumed natural strain four‐node quadrilateral element using the sampling surfaces (SaS) technique is developed. The SaS formulation is based on choosing inside the plate body N not equally spaced SaS parallel to the middle surface in order to introduce the displacements of these surfaces as basic plate variables. Such choice of unknowns with the consequent use of Lagrange polynomials of degree N–1 in the thickness direction permits the presentation of the plate formulation in a very compact form. The SaS are located at Chebyshev polynomial nodes that allow one to minimize uniformly the error due to the Lagrange interpolation. To avoid shear locking and have no spurious zero energy modes, the assumed natural strain concept is employed. The developed hybrid‐mixed four‐node quadrilateral plate element passes patch tests and exhibits a superior performance in the case of coarse distorted mesh configurations. It can be useful for the 3D stress analysis of thin and thick plates because the SaS formulation gives the possibility to obtain solutions with a prescribed accuracy, which asymptotically approach the 3D exact solutions of elasticity as the number of SaS tends to infinity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The partial hybrid stress model is applied to the refined C 1 higher‐order plate theory in this paper. The displacement model is adopted in the flexural part and the hybrid stress model in the transverse shear part. The plate concept is introduced and the governing equations of plate are derived variationally from the modified Hellinger‐Reissner principle. This new plate element is demonstrated to be more accurate than displacement formulation in the analysis of orthotropic thick laminated plates. Moreover, the through thickness distribution of transverse shear stress is precisely predicted.  相似文献   

6.
In this paper, a triangular thin flat shell element without rotation degrees of freedom is proposed. In the Kirchhoff hypothesis, the first derivative of the displacement must be continuous because there are second‐order differential terms of the displacement in the weak form of the governing equations. The displacement is expressed as a linear function and the nodal rotation is defined using node‐based smoothed finite element method. The rotation field is approximated using the nodal rotation and linear shape functions. This rotation field is linear in an element and continuous between elements. The curvature is defined by differentiating the rotation field, and the stiffness is calculated from the curvature. A hybrid stress triangular membrane element was used to construct the shell element. The penalty technique was used to apply the rotation boundary conditions. The proposed element was verified through several numerical examples.  相似文献   

7.
A new quadrilateral 4‐node element for shear deformable plates is developed based on the hybrid stress formulation. The element is designed to be simple, stable, free of locking and to pass all the patch tests. To this purpose, special attention is devoted to select displacement and stress approximations. The standard displacement interpolation is enhanced by linking the transverse displacement to the nodal rotations and an appropriate stress approximation is rationally derived. In particular, the assumed stress approximation is equilibrated within each element, co‐ordinate invariant and ruled by the minimum number of parameters. Excellent element performance is demonstrated by a wide experimental evaluation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Three‐dimensional hybrid‐Trefftz stress finite elements for plates and shells are proposed. Two independent fields are approximated: stresses within the element and displacement on their boundary. The required stress field derived from the Papkovitch‐Neuber solution of the Navier equation, which a priori satisfies the Trefftz constraint, is generated using homogeneous harmonic polynomials. Restriction on the polynomial degree in the coordinate measured along the thickness direction is imposed to reduce the number of independent terms. Explicit expressions of the corresponding independent polynomials are listed up to the fifth order. Illustrative applications to evaluate displacements and stresses are conducted by hexahedral hybrid‐Trefftz stress element models. The hierarchical p‐ and h‐refinement strategy are exploited in the numerical tests.  相似文献   

9.
The hybrid stress method has demonstrated many improvements over conventional displacement-based formulations. A main detraction from the method, however, has been the higher computatational cost in forming element stiffness coefficients due to matrix inversions and manipulations as required by the technique. By utilizing permissible field transformations of initially assumed stresses, a spanning set of orthonormalized stress modes can be generated which simplify the matrix equations and allow explicit expressions for element stiffness coefficients to be derived. The developed methodology is demonstrated using several selected 2-D quadrilateral and 3-D hexahedral elements.  相似文献   

10.
The equations that govern the dynamic response of saturated porous media are first discretized in time to define the boundary value problem that supports the formulation of the hybrid‐Trefftz stress element. The (total) stress and pore pressure fields are directly approximated under the condition of locally satisfying the domain conditions of the problem. The solid displacement and the outward normal component of the seepage displacement are approximated independently on the boundary of the element. Unbounded domains are modelled using either unbounded elements that locally satisfy the Sommerfeld condition or absorbing boundary elements that enforce that condition in weak form. As the finite element equations are derived from first‐principles, the associated energy statements are recovered and the sufficient conditions for the existence and uniqueness of the solutions are stated. The performance of the element is illustrated with the time domain response of a biphasic unbounded domain to show the quality of the modelling that can be attained for the stress, pressure, displacement and seepage fields using a high‐order, wavelet‐based time integration procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

The free vibration analysis of orthotropic composite laminates is investigated by using the partial hybrid plate element. The Hellinger‐Reissner principle is modified by adding kinetic energy. The through thickness effect is properly predicted since the transverse shear stress fields are assumed in the hybrid stress version. The natural frequencies are therefore accurately predicted. Apparently, the present study is more accurate than the displacement‐based higher‐order plate element.  相似文献   

12.
This paper considers stochastic hybrid stress quadrilateral finite element analysis of plane elasticity equations with stochastic Young's modulus and stochastic loads. Firstly, we apply Karhunen–Loève expansion to stochastic Young's modulus and stochastic loads so as to turn the original problem into a system containing a finite number of deterministic parameters. Then we deal with the stochastic field and the space field by k ?version/p ?version finite element methods and a hybrid stress quadrilateral finite element method, respectively. We derive a priori error estimates, which are uniform with respect to the Lamè constant λ ∈(0,+). Finally, we provide some numerical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a 3‐node C0 triangular element for the modified couple stress theory is proposed. Unlike the classical continuum theory, the second‐order derivative of displacement is included in the weak form of the equilibrium equations. Thus, the first‐order derivative of displacement, such as the rotation, should be approximated by a continuous function. In the proposed element, the derivative of the displacement is defined at a node using the node‐based smoothed finite element method. The derivative fields, continuous between elements and linear in an element, are approximated with the shape functions in element. Both the displacement field and the derivative field of displacement are expressed in terms of the displacement degree of freedom only. The element stiffness matrix is calculated using the newly defined derivative field. The performance of the proposed element is evaluated through various numerical examples.  相似文献   

15.
Finite element formulations for second‐order elliptic problems, including the classic H1‐conforming Galerkin method, dual mixed methods, a discontinuous Galerkin method, and two primal hybrid methods, are implemented and numerically compared on accuracy and computational performance. Excepting the discontinuous Galerkin formulation, all the other formulations allow static condensation at the element level, aiming at reducing the size of the global system of equations. For a three‐dimensional test problem with smooth solution, the simulations are performed with h‐refinement, for hexahedral and tetrahedral meshes, and uniform polynomial degree distribution up to four. For a singular two‐dimensional problem, the results are for approximation spaces based on given sets of hp‐refined quadrilateral and triangular meshes adapted to an internal layer. The different formulations are compared in terms of L2‐convergence rates of the approximation errors for the solution and its gradient, number of degrees of freedom, both with and without static condensation. Some insights into the required computational effort for each simulation are also given.  相似文献   

16.
A hybrid numerical scheme based on finite element and finite volume methods is developed to solve shallow water equations. In the recent past, we introduced a series of hybrid methods to solve incompressible low and high Reynolds number flows for single and two‐fluid flow problems. The present work extends the application of hybrid method to shallow water equations. In our hybrid shallow water flow solver, we write the governing equations in non‐conservation form and solve the non‐linear wave equation using finite element method with linear interpolation functions in space. On the other hand, the momentum equation is solved with highly accurate cell‐center finite volume method. Our hybrid numerical scheme is truly a segregated method with primitive variables stored and solved at both node and element centers. To enhance the stability of the hybrid method around discontinuities, we introduce a new shock capturing which will act only around sharp interfaces without sacrificing the accuracy elsewhere. Matrix‐free GMRES iterative solvers are used to solve both the wave and momentum equations in finite element and finite volume schemes. Several test problems are presented to demonstrate the robustness and applicability of the numerical method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
C0?1 patch test (Int. J. Numer. Meth. Engng 2004; 61 :433–454) proposed by Soh and Chen is a reliable method to ensure convergence of nonconforming finite element for the couple stress/strain gradient elasticity. The C0?1 patch test function is a complete quadratic polynomial that satisfies the equilibrium equations. To pass the C0?1 patch test, the element displacement functions used to calculate strains must satisfy C0 continuity (or weak C0 continuity) and quadratic completeness. In this paper, a 24‐DOF (degrees of freedom) quadrilateral element (CQ12+RDKQ) for the couple stress/strain gradient elasticity is developed by combining the refined thin plate element RDKQ and the nonconforming element CQ12. The element RDKQ, which satisfies weak C1 continuity, is used to calculate strain gradients, whereas strains are computed by the element CQ12, which is established based on an extended variational functional and satisfies weak C0 continuity and quadratic completeness. Numerical examples show that the element (CQ12+RDKQ) passes the C0?1 patch test and it is also more efficient than the existing available triangular and quadrilateral elements in stress concentration problems with size effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The quadrilateral area coordinate method proposed in 1999 (hereinafter referred to as QACM‐I) is a new and efficient tool for developing robust quadrilateral finite element models. However, such a coordinate system contains four components (L1, L2, L3, L4), which may make the element formulae and their construction procedure relatively complicated. In this paper, a new category of the quadrilateral area coordinate method (hereinafter referred to as QACM‐II), containing only two components Z1 and Z2, is systematically established. This new coordinate system (QACM‐II) not only has a simpler form but also retains the most important advantages of the previous system (QACM‐I). Hence, as an application, QACM‐II is used to formulate a new 4‐node membrane element with internal parameters. The whole process is similar to that of the famous Wilson's Q6 element. Numerical results show that the present element, denoted as QACII6, exhibits much better performance than that of Q6 in benchmark problems, especially for MacNeal's thin beam problem. This demonstrates that QACM‐II is a powerful tool for constructing high‐performance quadrilateral finite element models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A hybrid finite element method has been developed for application to the linear biphasic model of soft tissues. The biphasic model assumes that hydrated soft tissue is a mixture of two incompressible, immiscible phases, one solid and one fluid, and employs mixture theory to derive governing equations for its mechanical behaviour. These equations are time dependent, involving both fluid and solid velocities and solid displacement, and will be solved by spatial finite element and temporal finite difference approximation. The first step in the derivation of this hybrid method is application of a finite difference rule to the solid phase, thus obtaining equations with only velocities at discrete times as primary variables. A weighted residual statement of the temporally discretized governing equations, employing C° continuous interpolations of the solid and fluid phase velocities and discontinuous interpolations of the pore pressure and elastic stress, is then derived. The stress and pressure functions are chosen so that the total momentum equation of the mixture is satisfied; they are jointly referred to as an equilibrated stress and pressure field. The corresponding weighting functions are chosen to satisfy a relationship analogous to this equilibrium relation. The resulting matrix equations are symmetric. As an illustration of the hybrid biphasic formulation, six-noded triangular elements with complete linear, several incomplete quadratic, and complete quadratic stress and pressure fields in element local co-ordinates are developed for two dimensional analysis and tested against analytical solutions and a mixed-penalty finite element formulation of the same equations. The hybrid method is found to be robust and produce excellent results; preferred elements are identified on the basis of these results.  相似文献   

20.
Based on a rational choice of the internal incompatible displacement function and a special formulation of the a priori elimination of the internal non-conforming displacement parameters, a new refined quadrilateral plane element RQ4 has been developed. The present element can be shown to be computationally efficient, accurate and free from locking, and is better than other elements such as the Plan's element HS, the generalized hybrid element QCS6, and the refined hybrid element RGH4, etc. Several numerical examples are given to show the superior performances of the present element RQ4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号