首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled problems with various combinations of multiple physics, scales, and domains are found in numerous areas of science and engineering. A key challenge in the formulation and implementation of corresponding coupled numerical models is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. In a probabilistic context, any information that is to be communicated between subproblems or iterations should be characterized by an appropriate probabilistic representation. Although the number of sources of uncertainty can be expected to be large in most coupled problems, our contention is that exchanged probabilistic information often resides in a considerably lower‐dimensional space than the sources themselves. In this work, we thus propose to use a dimension reduction technique for obtaining the representation of the exchanged information, and we propose a measure transformation technique that allows subproblem implementations to exploit this dimension reduction to achieve computational gains. The effectiveness of the proposed dimension reduction and measure transformation methodology is demonstrated through a multiphysics problem relevant to nuclear engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Coupled problems with various combinations of multiple physics, scales, and domains are found in numerous areas of science and engineering. A key challenge in the formulation and implementation of corresponding coupled numerical models is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. In a probabilistic context, any information that is to be communicated between subproblems or iterations should be characterized by an appropriate probabilistic representation. Although the number of sources of uncertainty can be expected to be large in most coupled problems, our contention is that exchanged probabilistic information often resides in a considerably lower dimensional space than the sources themselves. This work thus presents an investigation into the characterization of the exchanged information by a reduced‐dimensional representation and in particular by an adaptation of the Karhunen‐Loève decomposition. The effectiveness of the proposed dimension–reduction methodology is analyzed and demonstrated through a multiphysics problem relevant to nuclear engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
We address the curse of dimensionality in methods for solving stochastic coupled problems with an emphasis on stochastic expansion methods such as those involving polynomial chaos expansions. The proposed method entails a partitioned iterative solution algorithm that relies on a reduced‐dimensional representation of information exchanged between subproblems to allow each subproblem to be solved within its own stochastic dimension while interacting with a reduced projection of the other subproblems. The proposed method extends previous work by the authors by introducing a reduced chaos expansion with random coefficients. The representation of the exchanged information by using this reduced chaos expansion with random coefficients enables an expeditious construction of doubly stochastic polynomial chaos expansions that separate the effect of uncertainty local to a subproblem from the effect of statistically independent uncertainty coming from other subproblems through the coupling. After laying out the theoretical framework, we apply the proposed method to a multiphysics problem from nuclear engineering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
As a novel type of polynomial chaos expansion (PCE), the data-driven PCE (DD-PCE) approach has been developed to have a wide range of potential applications for uncertainty propagation. While the research on DD-PCE is still ongoing, its merits compared with the existing PCE approaches have yet to be understood and explored, and its limitations also need to be addressed. In this article, the Galerkin projection technique in conjunction with the moment-matching equations is employed in DD-PCE for higher-dimensional uncertainty propagation. The enhanced DD-PCE method is then compared with current PCE methods to fully investigate its relative merits through four numerical examples considering different cases of information for random inputs. It is found that the proposed method could improve the accuracy, or in some cases leads to comparable results, demonstrating its effectiveness and advantages. Its application in dealing with a Mars entry trajectory optimization problem further verifies its effectiveness.  相似文献   

5.
We present stochastic projection schemes for approximating the solution of a class of deterministic linear elliptic partial differential equations defined on random domains. The key idea is to carry out spatial discretization using a combination of finite element methods and stochastic mesh representations. We prove a result to establish the conditions that the input uncertainty model must satisfy to ensure the validity of the stochastic mesh representation and hence the well posedness of the problem. Finite element spatial discretization of the governing equations using a stochastic mesh representation results in a linear random algebraic system of equations in a polynomial chaos basis whose coefficients of expansion can be non‐intrusively computed either at the element or the global level. The resulting randomly parametrized algebraic equations are solved using stochastic projection schemes to approximate the response statistics. The proposed approach is demonstrated for modeling diffusion in a square domain with a rough wall and heat transfer analysis of a three‐dimensional gas turbine blade model with uncertainty in the cooling core geometry. The numerical results are compared against Monte–Carlo simulations, and it is shown that the proposed approach provides high‐quality approximations for the first two statistical moments at modest computational effort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a non‐intrusive stochastic model reduction scheme is developed for polynomial chaos representation using proper orthogonal decomposition. The main idea is to extract the optimal orthogonal basis via inexpensive calculations on a coarse mesh and then use them for the fine‐scale analysis. To validate the developed reduced‐order model, the method is implemented to: (1) the stochastic steady‐state heat diffusion in a square slab; (2) the incompressible, two‐dimensional laminar boundary‐layer over a flat plate with uncertainties in free‐stream velocity and physical properties; and (3) the highly nonlinear Ackley function with uncertain coefficients. For the heat diffusion problem, the thermal conductivity of the slab is assumed to be a stochastic field with known exponential covariance function and approximated via the Karhunen–Loève expansion. In all three test cases, the input random parameters are assumed to be uniformly distributed, and a polynomial chaos expansion is found using the regression method. The Sobol's quasi‐random sequence is used to generate the sample points. The numerical results of the three test cases show that the non‐intrusive model reduction scheme is able to produce satisfactory results for the statistical quantities of interest. It is found that the developed non‐intrusive model reduction scheme is computationally more efficient than the classical polynomial chaos expansion for uncertainty quantification of stochastic problems. The performance of the developed scheme becomes more apparent for the problems with larger stochastic dimensions and those requiring higher polynomial order for the stochastic discretization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In spite of the success of the element‐density‐based topology optimization method in many problems including multiphysics design problems, some numerical difficulties, such as temperature undershooting, still remain. In this work, we develop an element connectivity parameterization (ECP) formulation for the topology optimization of multiphysics problems in order to avoid the numerical difficulties and yield improved results. In the proposed ECP formulation, finite elements discretizing a given design domain are not connected directly, but through sets of one‐dimensional zero‐length links simulating elastic springs, electric or thermal conductors. The discretizing finite elements remain solid during the whole analysis, and the optimal layout is determined by an optimal distribution of the inter‐element connectivity degrees that are controlled by the stiffness values of the links. The detailed procedure for this new formulation for multiphysics problems is presented. Using one‐dimensional heat transfer models, the problem of the element‐density‐based method is explained and the advantage of the ECP method is addressed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In this paper, we consider the problem of constructing reduced‐order models of a class of time‐dependent randomly parametrized linear partial differential equations. Our objective is to efficiently construct a reduced basis approximation of the solution as a function of the spatial coordinates, parameter space, and time. The proposed approach involves decomposing the solution in terms of undetermined spatial and parametrized temporal basis functions. The unknown basis functions in the decomposition are estimated using an alternating iterative Galerkin projection scheme. Numerical studies on the time‐dependent randomly parametrized diffusion equation are presented to demonstrate that the proposed approach provides good accuracy at significantly lower computational cost compared with polynomial chaos‐based Galerkin projection schemes. Comparison studies are also made against Nouy's generalized spectral decomposition scheme to demonstrate that the proposed approach provides a number of computational advantages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We present two methods for efficiently sampling the response (trajectory space) of multibody systems operating under spatial uncertainty, when the latter is assumed to be representable with Gaussian processes. In this case, the dynamics (time evolution) of the multibody systems depends on spatially indexed uncertain parameters that span infinite‐dimensional spaces. This places a heavy computational burden on existing methodologies, an issue addressed herein with two new conditional sampling approaches. When a single instance of the uncertainty is needed in the entire domain, we use a fast Fourier transform technique. When the initial conditions are fixed and the path distribution of the dynamical system is relatively narrow, we use an incremental sampling approach that is fast and has a small memory footprint. Both methods produce the same distributions as the widely used Cholesky‐based approaches. We illustrate this convergence at a smaller computational effort and memory cost for a simple non‐linear vehicle model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
    
Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent input uncertainties, namely, material, geometry, and external force uncertainties. The stochastic field is represented using the polynomial chaos expansion. The challenge in numerical integration over multidimensional probabilistic space is addressed using the pseudo-spectral Galerkin method. Thereafter, a sensitivity analysis based on Sobol indices using the derived stochastic extended Finite Element Method solution is presented. The efficiency and accuracy of the proposed novel framework against conventional Monte Carlo methods is elucidated in detail for a few one and two dimensional problems.  相似文献   

12.
由于加工、制造等原因,实际结构系统往往所具有很多不确定性,准确评估随机系统的动力学行为不仅具有实际意义,而且是近年来结构动力学理论的一个研究热点。本文研究了同时考虑结构模型参数与所受外激励载荷具有不确定性的复合随机振动问题。结构模型参数的不确定性采用随机变量模拟,外激励载荷的不确定性采用随机过程模拟,提出了结构随机振动响应评估的混合混沌多项式-虚拟激励(PC-PEM)方法。数值算例研究了参数不确定性在21杆桁架中的传播,讨论了响应的一阶、二阶统计矩,并同蒙特卡洛方法进行对比表明提出方法的正确性和有效性。本文的工作对于考虑不确定的复杂装备与结构系统的随机振动分析具有很好的借鉴意义。  相似文献   

13.
This article aims to present a combination of stochastic finite element and spectral finite element methods as a new numerical tool for uncertainty quantification. One of the well-established numerical methods for reliability analysis of engineering systems is the stochastic finite element method. In this article, a commonly used version of the stochastic finite element method is combined with the spectral finite element method. Furthermore, the spectral finite element method is a numerical method employing special orthogonal polynomials (e.g., Lobatto) and quadrature schemes (e.g., Gauss-Lobatto-Legendre), leading to suitable accuracy, and much less domain discretization with excellent convergence as well. The proposed method of this article is a hybrid method utilizing efficiencies of both methods for analysis of stochastically linear elastostatic problems. Moreover, a spectral finite element method is proposed for numerical solution of a Fredholm integral equation followed by the present method, to provide further efficiencies to accelerate stochastic computations. Numerical examples indicate the efficiency and accuracy of the proposed method.  相似文献   

14.
Model structure uncertainty, originating from assumptions and idealizations in modelling processes, is a form of uncertainty that is often hard to quantify. In this article, the authors propose and demonstrate a method, the inductive design exploration method (IDEM), which facilitates robust design in the presence of model structure uncertainty. The approach in this method is achieving robustness by compromising between the degree of system performance and the degree of reliability based on structure uncertainty associated with system models (i.e. models for performances and constraints). The main strategies in the IDEM include: (i) identifying feasible ranged sets of design space instead of single (or optimized) design solution, considering all types of quantifiable uncertainties and (ii) systematically compromising target achievement with provision for potential uncertainty. The IDEM is successfully demonstrated in a clay-filled polyethylene cantilever beam design example, which is a simple but representative example of integrated materials and product design problems.  相似文献   

15.
Supply chain risk propagation is a cascading effect of risks on global supply chain networks. The paper attempts to measure the behaviour of risks following the assessment of supply chain risk propagation. Bayesian network theory is used to analyse the multi-echelon network faced with simultaneous disruptions. The ripple effect of node disruption is evaluated using metrics like fragility, service level, inventory cost and lost sales. Developed risk exposure and resilience indices support in assessing the vulnerability and adaptability of each node in the supply chain network. The research provides a holistic measurement approach for predicting the complex behaviour of risk propagation for improved supply chain risk management.  相似文献   

16.
This work presents a data‐driven stochastic collocation approach to include the effect of uncertain design parameters during complex multi‐physics simulation of Micro‐ElectroMechanical Systems (MEMS). The proposed framework comprises of two key steps: first, probabilistic characterization of the input uncertain parameters based on available experimental information, and second, propagation of these uncertainties through the predictive model to relevant quantities of interest. The uncertain input parameters are modeled as independent random variables, for which the distributions are estimated based on available experimental observations, using a nonparametric diffusion‐mixing‐based estimator, Botev (Nonparametric density estimation via diffusion mixing. Technical Report, 2007). The diffusion‐based estimator derives from the analogy between the kernel density estimation (KDE) procedure and the heat dissipation equation and constructs density estimates that are smooth and asymptotically consistent. The diffusion model allows for the incorporation of the prior density and leads to an improved density estimate, in comparison with the standard KDE approach, as demonstrated through several numerical examples. Following the characterization step, the uncertainties are propagated to the output variables using the stochastic collocation approach, based on sparse grid interpolation, Smolyak (Soviet Math. Dokl. 1963; 4 :240–243). The developed framework is used to study the effect of variations in Young's modulus, induced as a result of variations in manufacturing process parameters or heterogeneous measurements on the performance of a MEMS switch. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A nonparametric probabilistic approach for modeling uncertainties in projection‐based, nonlinear, reduced‐order models is presented. When experimental data are available, this approach can also quantify uncertainties in the associated high‐dimensional models. The main underlying idea is twofold. First, to substitute the deterministic reduced‐order basis (ROB) with a stochastic counterpart. Second, to construct the probability measure of the stochastic reduced‐order basis (SROB) on a subset of a compact Stiefel manifold in order to preserve some important properties of a ROB. The stochastic modeling is performed so that the probability distribution of the constructed SROB depends on a small number of hyperparameters. These are determined by solving a reduced‐order statistical inverse problem. The mathematical properties of this novel approach for quantifying model uncertainties are analyzed through theoretical developments and numerical simulations. Its potential is demonstrated through several example problems from computational structural dynamics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

In this paper, the robust H 8 output feedback control problem for general nonlinear systems with L 2‐norm‐bounded structured uncertainties is considered. Sufficient conditions for the solvability of robust performance synthesis problems are represented in terms of two Hamilton‐Jacobi inequalities with n independent variables. Based on these conditions, a state space characterization of a robust H 8 output feedback controller solving the considered problem is proposed. An example is provided for illustration.  相似文献   

19.
F. Niakan  M. Mohammadi 《工程优选》2013,45(12):1670-1688
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.  相似文献   

20.
In this study, a general comprehensive model is proposed for strategic closed-loop supply chain network design under interval data uncertainty. The proposed model considers various assumptions such as multiple periods, multiple products, and multiple supply chain echelons as well as uncertain demand and purchasing cost. In addition, bill of materials for each product is considered via a new approach in management of forward and reverse flows of products for producing new products and reusing or disassembling returned products. Uncertainty of parameters in the proposed model is handled via an interval robust optimisation technique. The model assumptions are well matched with decision making environments of food and high-tech electronics manufacturing industries. The factors that make these two industries similar are time-dependent properties of products such as prices and warehousing lifetime period. The computational results of solving the proposed model via LINGO 8 demonstrate efficiency of the proposed model in dealing with uncertainty in an agile manufacturing context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号