首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To decrease the interference to the primary user (PU) and improve the detected performance of cognitive radio (CR), a single‐band sensing scheme wherein the CR periodically senses the PU by cooperative spectrum sensing is proposed in this paper. In this scheme, CR first senses and then transmits during each period, and after the presence of the PU is detected, CR has to vacate to search another idle channel. The joint optimization algorithm based on the double optimization is proposed to optimize the periodical cooperative spectrum sensing scheme. The maximal throughput and minimal search time can be respectively obtained through the joint optimization of the local sensing time and the number of the cooperative CRs. We also extend this scheme to the periodical wideband cooperative spectrum sensing, and the joint optimization algorithm of the numbers of the sensing time slots and cooperative CRs is also proposed to obtain the maximal throughput of CR. The simulation shows that the proposed algorithm has lower computational quantity, and compared with the previous algorithms, when SNR = 5 dB, the throughput and search time of the proposed algorithm can respectively improve 0.3 kB and decrease 0.4 s. The simulation also indicates that the wideband cooperative spectrum sensing can achieve higher throughput than the single‐band cooperative spectrum sensing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In order to take advantage of the asynchronous sensing information, alleviate the sensing overhead of secondary users (SUs) and improve the detection performance, a sensor node-assisted asynchronous cooperative spectrum sensing (SN-ACSS) scheme for cognitive radio (CR) network (CRN) was proposed. In SN-ACSS, each SU is surrounded by sensor nodes (SNs), which asynchronously make hard decisions and soft decisions based on the Bayesian fusion rule instead of the SU. The SU combines these soft decisions and makes the local soft decision. Finally, the fusion center (FC) fuses the local soft decisions transmitted from SUs with different weight coefficients to attain the final soft decision. Besides, the impact of the statistics of licensed band occupancy on detection performance and the fact that different SNs have different sensing contributions are also considered in SN-ACSS scheme. Numerical results show that compared with the conventional synchronous cooperative spectrum sensing (SCSS) and the existing ACSS schemes, SN-ACSS algorithm achieves a better detection performance and lower cost with the same number of SNs.  相似文献   

3.
How much time is needed for wideband spectrum sensing?   总被引:4,自引:0,他引:4  
In this paper, we consider a wideband cognitive radio network (CRN) which can simultaneously sense multiple narrowband channels and thus aggregate the perceived available channels for transmission. We study the problem of designing the optimal spectrum sensing time and power allocation schemes so as to maximize the average achievable throughput of the CRN subject to the constraints of probability of detection and the total transmit power. The optimal sensing time and power allocation strategies are developed under two different total power constraints, namely, instantaneous power constraint and average power constraint. Finally, numerical results show that, under both cases, for a CRN with three 6MHz channels, if the frame duration is 100ms and the target probability of detection is 90% for the worst case signal-to-noise ratio of primary users being ?12dB, ?15dB and ?20dB, respectively, the optimal sensing time is around 6ms and it is almost insensitive to the total transmit power.  相似文献   

4.
In this paper, we propose a new cooperative multiple‐input single‐output (MISO) cognitive radio (CR) system, which can use some of the antennas to transmit its data and the others to help to transmit the data of the primary user (PU) by performing cooperative communication if the presence of the PU is detected through the cooperative spectrum sensing. A new cooperative sensing‐throughput tradeoff model is proposed, which maximizes the aggregate rate of the CR by jointly optimizing sensing time and spatial sub‐channel power, subject to the constraints of the aggregate rate of the PU, the false alarm and detection probabilities, the aggregate interference to the PU and the aggregate power of the CR. Simulation results show that compared with the conventional scheme, the proposed cooperative scheme can achieve the larger aggregate rate of the CR, while keeping the aggregate rate of the PU invariable with the increasing of the interference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a scheme that exploits cooperative diversity of multiple relays to provide physical layer security against an eavesdropping attack is concerned. Relay‐based cognitive radio network (CRN) faces issues multiple issues other than the same as faced by conventional wireless communications. If the nodes in a CRN are able to harvest energy and then spend less energy than the total energy available, we can ensure a perpetual lifetime for the network. In this paper, an energy‐constrained CRN is considered where relay nodes are able to harvest energy. A cooperative diversity‐based relay and subchannel‐selection algorithm is proposed, which selects a relay and a subchannel to achieve the maximum secrecy rate while keeping the energy consumed under a certain limit. A transmission power factor is also selected by the algorithm, which ensures long‐term operation of the network. The power allocation problem at the selected relay and at the source also satisfies the maximum‐interference constraint with the primary user (PU). The proposed scheme is compared with a variant of the proposed scheme where the relays are assumed to have an infinite battery capacity (so maximum transmission power is available in every time slot) and is compared with a scheme that uses jamming for physical layer security. The simulation results show that the infinite battery‐capacity scheme outperforms the jamming‐based physical layer security scheme, thus validating that cooperative diversity‐based schemes are suitable to use when channel conditions are better employed, instead of jamming for physical layer security.  相似文献   

6.
本文研究了全双工中继协作下的认知MIMO系统的平均吞吐量最大化问题。与传统的中继协作认知无线电系统不同的是,该系统模型中的双工中继节点既能协助认知用户源节点进行多天线频谱感知以提高频谱检测性能,也能解码转发认知用户源节点的发送信号以获得更大的系统吞吐量。为使系统平均吞吐量最大,首先,本文以认知用户能获得的最大平均频谱空洞被发现的概率为目标,对系统的帧结构进行优化以获得最佳的感知时间,接着对多个发送天线进行优化以选择出最佳的发送天线,并推导出了在总的发送功率和对主用户干扰受限条件下的认知用户源节点和双工中继节点的最佳功率分配方案。最后的仿真结果表明本文提出的系统模型和优化方案相比传统的双工等功率分配方案以及单工功率分配方案能够获得更大的系统平均吞吐量。   相似文献   

7.
张晶  陆音  高西奇  郑福春 《通信学报》2013,34(12):42-48
提出一种基于主用户干扰约束的机会频谱接入感知-传输时隙调度优化方案。首先,推导切换机制下认知系统的吞吐量和主用户干扰率,建立感知时间和感知周期联合优化模型;然后,在主用户干扰率和次用户感知质量双重约束下,推导了可最大化认知系统吞吐量的最优感知时间和感知周期的闭合表达式;最后,阐述了时隙优化调度方案并计算了认知系统可获得的最大吞吐量。仿真结果表明,所提出的时隙调度方案可以为认知系统提供更高的吞吐量,并更好地适应主用户干扰率和感知质量约束的变化。  相似文献   

8.
This paper mainly focuses on solving the energy efficiency (EE) maximization problem in double threshold‐based soft decision fusion (SDF) cooperative spectrum sensing (CSS) in the cognitive radio network (CRN). The solution to this objective problem starts with the selection of suitable secondary users (SUs) both for the spectrum sensing and data transmission. Here, energy efficiency is maximized under the constraints of interference to the primary user (PU), an acceptable outage of SUs, the transmission power of the SUs and the probability of false alarm. We propose a novel algorithm called iterative Dinkelbach method (IDM) which jointly optimizes the sensing time and transmission power allocation to the SUs. Further, Lagrangian duality theorem is employed to find the exact power assigned to the SUs. Finally, simulation results are carried out to validate the effectiveness of our proposed scheme by comparing with the other existing schemes. The performance is also analyzed for different system parameters.  相似文献   

9.
In cognitive radio (CR) networks, secondary users should effectively use unused licensed spectrums, unless they cause any harmful interference to the primary users. Therefore, spectrum sensing and channel resource allocation are the 2 main functionalities of CR networks, which play important roles in the performance of a CR system. To maximize the CR system utility, we propose a joint out‐of‐band spectrum sensing and operating channel allocation scheme based on genetic algorithm for frequency hopping–based CR networks. In this paper, to effectively sense the primary signal on hopping channels at each hopping slot time, a set of member nodes sense the next hopping channel, which is called out‐of‐band sensing. To achieve collision‐free cooperative sensing reporting, the next channel detection notification mechanism is presented. Using genetic algorithm, the optimum sensing and data transmission schedules are derived. It selects a sensing node set that participate the spectrum sensing for the next expected hopping channel during the current channel hopping time and another set of nodes that take opportunity for transmitting data on the current hopping channel. The optimum channel allocation is performed in accordance with each node's individual traffic demand. Simulation results show that the proposed scheme can achieve reliable spectrum sensing and efficient channel allocation.  相似文献   

10.
Cognitive radio (CR) is considered to be a promising technology for future wireless networks to make opportunistic utilization of the unused or underused licensed spectrum. Meanwhile, coordinated multipoint joint transmission (CoMP JT) is another promising technique to improve the performance of cellular networks. In this paper, we propose a CR system with CoMP JT technique. We develop an analytical model of the received signal‐to‐noise ratio at a CR to determine the energy detection threshold and the minimum number of required samples for energy detection–based spectrum sensing in a CR network (CRN) with CoMP JT technique. The performance of energy detection–based spectrum sensing under the developed analytical model is evaluated by simulation and found to be reliable. We formulate an optimization problem for a CRN with CoMP JT technique to configure the channel allocation and user scheduling for maximizing the minimum throughput of the users. The problem is found to be a complex mixed integer linear programming. We solve the problem using an optimization tool for several CRN instances by limiting the number of slots in frames. Further, we propose a heuristic‐based simple channel allocation and user scheduling algorithm to maximize the minimum throughput of the users in CRNs with CoMP JT technique. The proposed algorithm is evaluated via simulation and found to be very efficient.  相似文献   

11.
为了满足车联网中不同应用的服务质量(Quality of Service, QoS)要求,提出了一种基于网络切片技术的车联网频谱资源分配方案。该方案考虑数据接入控制,通过联合优化频谱资源块(Resource Block, RB)分配和车辆信号发射功率控制,在安全服务切片低时延高可靠性的约束下,最大化信息娱乐服务切片的平均和吞吐量。将车联网资源管理建模为一个混合整数随机优化问题,利用李雅普诺夫(Lyapunov)优化理论将该优化问题分解为接入控制和RB分配与功率控制两个子问题,并分别对其进行求解,得到每个时隙的接入控制和资源分配方案。仿真结果表明,所提出的资源分配方案能够有效提高信息娱乐服务切片的平均和吞吐量,并且可以通过调整引入的控制参数值来实现吞吐量和时延的动态平衡。同时,与已有方案相比,该方案具有更好的时延性能。  相似文献   

12.
This paper presents a study of a cross‐layer design through joint optimization of spectrum allocation and power control for cognitive radio networks (CRNs). The spectrum of interest is divided into independent channels licensed to a set of primary users (PUs). The secondary users are activated only if the transmissions do not cause excessive interference to PUs. In particular, this paper studies the downlink channel assignment and power control in a CRN with the coexistence of PUs and secondary users. The objective was to maximize the total throughput of a CRN. A mathematical model is presented and subsequently formulated as a binary integer programming problem, which belongs to the class of non‐deterministic polynomial‐time hard problems. Subsequently, we develop a distributed algorithm to obtain sub‐optimal results with lower computational complexity. The distributed algorithm iteratively improves the network throughput, which consists of several modules including maximum power calculation, excluded channel sets recording, base station throughput estimation, base station sorting, and channel usage implementation. Through investigating the impacts of the different parameters, simulation results demonstrates that the distributed algorithm can achieve a better performance than two other schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Bluetooth is an open specification for a technology to enable short‐range wireless communications that operate in an ad hoc fashion. Bluetooth uses frequency hopping with a slot length of 625 μs. Each slot corresponds to a packet and multi‐slot packets of three or five slots can be transmitted to enhance the transmission efficiency. However, the use of multi‐slot packet may degrade the transmission performance under high channel error probability. Thus, the length of multi‐slot should be adjusted according to the current channel condition. Segmentation and reassembly (SAR) operation of Bluetooth enables the adjustment of the length of multi‐slot. In this paper, we propose an efficient multi‐slot transmission scheme that adaptively determines the optimal length of slots of a packet according to the channel error probability. We first discuss the throughput of a Bluetooth connection as a function of the length of a multi‐slot and the channel error probability. A decision criteria which gives the optimal length of the multi‐slot is presented under the assumption that the channel error probability is known. For the implementation in the real Bluetooth system, the channel error probability is estimated with the maximum likelihood estimator (MLE). A simple decision rule for the optimal multi‐slot length is developed to maximize the throughput. Simulation experiment shows that the proposed decision rule for the multi‐slot transmission effectively provides the maximum throughput under any type of channel error correlation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
An energy harvesting (EH) and cooperative cognitive radio (CR) network (CRN) is studied in this paper where CR users transmit data through a primary user (PU) channel if the channel remains idle, else an optimal number CRs helps in transmission of PU. To achieve the optimum number of CRs (ONCR) involved in cooperation, a novel scheme based on a combination of channel censoring and total error is proposed. The performance of the proposed scheme is investigated under RF harvesting scenario. The EH is dependent on sensing decision and a CR source harvests energy from PU's RF signal. The harvested energy (HE) is split into two parts: One part is used by the CR network (CRN) for its own transmission, and the other part is used for supporting PU. The effect of the energy allocation factor on total throughput is also investigated. New expressions for optimal number of CRs and throughput are developed. The effect of network parameters such as sensing time, censoring threshold, and energy allocation parameter (EAP) on throughput is investigated. Impact of distance between nodes is also studied.  相似文献   

15.
Effective inter‐cell interference mitigation has been extensively studied because of its outstanding cell‐edge signal quality improvement capability. Conventional static inter‐cell interference coordination strategies, including fractional frequency reuse and soft frequency reuse, have received much attention owing to their effectiveness in mitigating interference and low complexity in implementation. However, they are less effective when dealing with dense uneven traffic distributions and dynamic traffic demands and thus incur low spectrum utilization in some cells and spectrum shortage in others. This paper proposes a universal frequency reuse scheme in a two‐layer Long Term Evolution‐Advanced heterogeneous network to ensure good throughput for all user equipment (UE), especially UEs at cell edge. The proposed scheme allows each cell to use all the spectrum resources, limited by an orderly regulation of all sub‐bands. This scheme minimizes the potential occurrence probability of inter‐cell co‐sub‐band interference through an intra‐cell sub‐band resource management. Furthermore, a graph‐theoretic based sub‐band allocation algorithm is developed to optimize UE throughput performance, especially for the cell‐edge low signal to interference noise ratio UEs. A comprehensive performance comparison among different frequency reuse schemes is conducted by considering performance metrics, including cell‐edge throughput, average throughput, and signal to interference noise ratio cumulative distribution function. Simulation result shows that the universal frequency reuse scheme outperforms other two schemes significantly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
在无人机(Unmanned Aerial Vehicle,UAV)认知通信网络中,其能量受限和通信高吞吐量问题备受关注。然而,能量效率(Energy Efficiency,EE)的提升可能会导致频谱效率(Spectrum Efficiency,SE)的下降。针对此问题,对UAV协作认知通信网络中EE和SE的折中优化进行了研究。首先,进行了感知时间、UAV通信的发射功率和判决门限各自对SE与EE两者的优化;其次,通过二分法求解使得EE和SE最大化的感知时间值,并通过穷尽搜索法分别求解感知时间、UAV通信的发射功率和判决门限对EE和SE折中优化问题的最优参数值。在此基础上,提出一种联合参数迭代优化算法,求解EE和SE的折中优化问题。仿真实验表明,SE和EE之间存在折中的权衡,并验证了所提优化方案的有效性。  相似文献   

17.
A joint optimal sensing-transmission time duration and power allocation scheme has been proposed to maximize the energy efficiency for cooperative relay network.In particular,observing that the spectrum sensing and data transmission time duration lies within a strict interval,the joint optimal solutions of our proposed scheme are achieved by sequential optimization method.Numerical evaluation results reveal that the relay-assisted transmission using our proposed scheme significantly outperforms the non-relay transmission in terms of the network energy-efficiency.  相似文献   

18.
In this paper, a joint spectrum sensing and accessing optimization framework for a multiuser cognitive network is proposed to significantly improve spectrum efficiency. For such a cognitive network, there are two important and limited resources that should be distributed in a comprehensive manner, namely feedback bits and time duration. First, regarding the feedback bits, there are two components: sensing component (used to convey various users' sensing results) and accessing component (used to feedback channel state information). A large sensing component can support more users to perform cooperative sensing, which results in high sensing precision. However, a large accessing component is preferred as well, as it has a direct impact on the performance in the multiuser cognitive network when multi‐antenna technique, such as zero‐forcing beamforming, is utilized. Second, the tradeoff of sensing and accessing duration in a transmission interval needs to be determined, so that the sum transmission rate is optimized while satisfying the interference constraint. In addition, the aforementioned two resources are interrelated and inversive under some conditions. Specifically, sensing time can be saved by utilizing more sensing feedback bits for a given performance objective. Hence, the resources should be allocation in a jointly manner. Based on the joint optimization framework and the intrinsic relationship between the two resources, we propose two joint resource allocation schemes by maximizing the average sum transmission rate in a multiuser multi‐antenna cognitive network. Simulation results show that, by adopting the joint resource allocation schemes, obvious performance gain can be obtained over the traditional fixed strategies.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses the issues on spectrum sharing in a cognitive radio network consisting of a primary user and a group of cognitive users. Each cognitive user may occupy a non‐overlapped sub‐band of the primary spectrum, but it needs to perform spectrum sensing independently before accessing the sub‐band. To reduce the complexity of spectrum sensing and thus energy consumption, this paper proposes a scheduled spectrum sensing scheme. First, we consider a single spectrum sensing scenario where only one cognitive user is elected to perform spectrum sensing, and then it broadcasts its sensing results to the other cognitive users. The scheduled spectrum sensing scheme works in both network‐centric and user‐centric ways. Next, the scheduled spectrum sensing scheme is further generalized to work in a multiple spectrum sensing scenario. The results show the effectiveness of the proposed schemes compared with the traditional schemes where all cognitive users may perform spectrum sensing at the same time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the impact of a multi slot based cooperative spectrum sensing (CSS) on the performance of a cognitive radio (CR) network has been investigated. Each CR user, equipped with an improved energy detector (IED), uses a number of mini slots of the sensing time to perform the spectrum sensing. Each CR uses OR logic to combine the sub local decisions generated in each mini slot to obtain a local decision at CR level. Local decisions are sent to fusion centre (FC) over reporting channel. The FC obtains a final decision about the presence of primary user (PU) by combining the local decisions using a fusion rule: Majority or Maximal Ratio Combining. The performance of the CSS is assessed in terms of detection probability and false alarm probability considering both the sensing and reporting channels are Rayleigh faded. Furthermore, the impact of a number of sensing slots and IED parameter on throughput of CR network is also evaluated under the proposed spectrum sensing scenario. Impacts of several sensing parameters such as sensing channel SNR and reporting channel SNR on the performance of CR network are also evaluated. Performances of two fusion rules under study are compared. Effect of sensing error and synchronisation error is indicated. Further the study is extended for independent but non identically distributed (i.n.i.d.) Rayleigh faded channels as well as for a multiple PU scenario also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号