首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选取粒度小于6mm的低价值兰炭末,以K2CO3为催化剂,采用溶液浸渍-水蒸气高温活化技术制备兰炭基活性炭,通过计算收率,碘吸附和亚甲基蓝吸附实验,低温N2等温吸附/脱附实验以及扫描电子显微镜(SEM)表征活性炭孔结构特征,重点考察了催化剂溶液浓度、催化活化温度对孔隙结构的影响。研究表明,相比于常规水蒸气高温活化,K2CO3催化作用能缩短活化时间,活化30min已经十分充分。随着活化温度的上升和催化剂浓度的增加,亚甲基蓝吸附值先增大后减小,碘吸附值持续降低。当催化剂浓度为0.6mol·L-1,亚甲基蓝吸附值最高,为234.12mg·g-1。催化活化过程的最佳温度是500℃,此时兰炭基活性炭比表面积和孔容积分别为579.32m2·g-1和0.309cm3·g-1,材料中孔和微孔均较为发达。用扫描电镜观察了催化活化制备的兰炭基活性炭的表面形貌,其已经没有...  相似文献   

2.
低成本高效活性炭吸附剂在废水处理中起着至关重要的作用。可再生的树枝是制备高效吸附剂的“零”成本原料。以刺槐树枝为原料,采用水蒸气活化法制备槐树活性炭。为最大化提高活性炭的利用率,以吸附量为指标,采用响应面法优化槐木活性炭吸附Pb2+工艺。结果表明:3 cm×8 cm左右槐树枝段,在110℃下干燥3天后在600℃恒温炭化60 min的槐木炭,再在650℃下恒温活化80 min,水蒸气流量为30 g·h-1,制得槐木活性炭。其对Pb(NO3)2吸附的最佳工艺:吸附温度29.8℃、吸附时间64.1 min和料液比1.1 mL·g-1。该条件下吸附量预测值为137.9 mg·g-1,3个因素的显著性由大到小依次为:料液比、吸附温度、吸附时间。验证性实验表明:吸附量平均值为135.0 mg·g-1,与预测值的相对误差为2.10%,实验值与模型预测值拟合性良好。  相似文献   

3.
以入侵生物空心莲子草为原料,以K2CO3为活化剂,经一步共混活化法制备活性炭。研究了K2CO3与空心莲子草质量比、活化温度及活化时间对活性炭得率及吸附性能的影响。利用扫描电子显微镜(SEM)对不同温度下得到的活性炭进行了表面形貌观察。实验结果表明,K2CO3活化空心莲子草的最佳活化条件为:质量比为1.5,活化温度及时间分别为800℃,3.0 h,此时活性炭得率为13.79%,其碘吸附值及亚甲基蓝吸附值分别为1477 mg·g-1和384 mg·g-1。当氮气流量在20~100 ml·min-1范围内变化时,K2CO3的回收率相差不大,且其回收率均能达到80%以上。SEM结果表明活化温度对活性炭孔结构具有明显影响。  相似文献   

4.
研究了制备梧桐树叶基活性炭的影响因素。以深秋梧桐树叶为原料,采用微波辐照磷酸活化法制备了梧桐树叶基活性炭,并对影响梧桐树叶基活性炭吸附性能的因素进行了研究。选取微波功率、辐照时间、液固比、活化剂浓度为影响因素,以碘吸附值作为评价指标,通过正交实验确定了梧桐树叶基活性炭的最佳制备条件;分析了各影响因素对梧桐树叶基活性炭性能的影响程度。以碘吸附值作为评价指标,最佳水平组合为微波功率800 W、辐照时间8 min、活化剂浓度80%、液固比为3 mL.g-1,在此条件下制备的梧桐树叶基活性炭碘吸附值大于618.78 mg.g-1。各影响因素对梧桐树叶基活性炭性能的影响程度依次为活化时间>液固比>微波功率>磷酸浓度。  相似文献   

5.
本文选取兰炭基活性炭作为研究对象,采用微波辅助Na OH进行活化,通过计算收率和碘吸附实验、低温N2等温吸附/脱附实验表征成品,重点研究了Na OH溶液浓度和微波加热条件对活性炭孔隙结构的影响。结果表明,兰炭基活性炭经0.5mol·L-1Na OH溶液充分浸渍后,再在700W条件下活化10min效果最佳,成品较活化前保持丰富微孔结构的同时增加了中大孔比例,比表面积和微孔比表面积分别为721.24m2·g-1和512.13m2·g-1,平均孔径2.14nm。微波加热和管式炉加热活化对比实验表明,虽然管式炉加热活化作用更强,对中大孔促进作用也更明显,但已经出现过度活化的趋势。  相似文献   

6.
以中药渣作为原料,用ZnCl2作为活化试剂,通过试验得出浸渍比、浸渍浓度、活化时间、活化温度对于活性炭吸附性能的影响,研究出综合性能较高的制备活性炭的工艺。选取中药渣,经预处理后,用不同浓度ZnCl2溶液按照不同的浸渍比在室温下浸渍16 h,再经过干燥、活化、碳化等步骤制备成活性炭。当比例为3∶1(mL·g-1)的浸渍比、45%的活化剂的质量分数、600℃的活化温度、90 min的活化时间时,ZnCl2试剂作为活化剂制备的活性炭的吸附能力最强,可成为中药渣资源化利用探索的新途径。  相似文献   

7.
《应用化工》2022,(1):80-85
以褐煤为原料,KOH为活化剂和微波吸收剂,分别以常规活化和微波活化的方式一步制备褐煤活性炭。采用碘吸附值为基准指标评估其吸附性能,利用氮气吸附脱附分析其比表面积和孔隙结构,SEM和TEM表征其显微结构,FTIR和Boehm滴定法研究其表面官能团的类型和数量。结果表明,微波功率700 W,辐照10 min,碱碳比1∶1时制得碘吸附值最高的活性炭,碘值达1 425.2 mg/g,比表面积可达1 369.5 m2/g,孔容为1.02 cm2/g,孔容为1.02 cm3/g,主要为微孔和小介孔;相较于常规活性炭,微波活化活性炭的表面酸性含氧基团含量明显较少,碱性含氧基团含量较多,适用于酸性气体分离。  相似文献   

8.
低成本高效活性炭吸附剂在废水处理中起着至关重要的作用。可再生的树枝是制备高效吸附剂的“零”成本原料。以刺槐树枝为原料,采用水蒸气活化法制备槐树活性炭,并优化活性炭吸附废水重金属离子Pb2+的工艺。结果表明:3 cm×10 cm左右槐树枝段,在110℃下干燥3天后在500℃恒温炭化30 min的槐木炭,再在650℃下恒温活化80 min,水蒸气流量为30 g·h-1,制备的槐木活性炭对废水中的Pb2+有着较好的吸附能力和去除能力,最大吸附量202.0mg·g-1,最大净化率大于95%。通过单因素实验获得活性炭对Pb2+吸附最佳的工艺参数:Pb2+初始质量浓度为0.5 mg·mL-1,吸附时间60 min,吸附温度20℃。Pb2+在槐木活性炭上的吸附更适合Freundlich吸附模型。在低于70℃时,吸附是放热过程,槐树活性炭对Pb2+的吸附能力大于对溶剂的吸附,吸附是自发过程。  相似文献   

9.
以富含含氮官能团的大豆秸秆为原料前体,结合微波加热的特殊优势,将微波加热技术应用于大豆秸秆热解和活化工艺。以热解固体产物为活化原料,以CO2为活化剂进行活性炭制备研究,以期制备出高脱硫性能的生物质活性炭。首先通过正交实验设计及极差分析得出最优活化水平,再通过单因素实验法考察微波功率、CO2流量和活化时间对活性炭产率、孔隙结构以及脱硫性能的影响。对比分析选出最佳活化条件为微波功率900 W,CO2流量0.10 L/min,活化时间20 min。在此条件下活性炭产率为76.3%(质量),SO2饱和吸附容量为112.56 mg/g,比表面积为466.28 m2/g。相比热解炭,活性炭的比表面积更大,孔隙更加丰富,脱硫性能显著提高。  相似文献   

10.
以黑茶渣和生活污泥为原料,以碘吸附为主要参考指标,采用KOH作为制备活化剂,改变温度、配比、活化时间和活化剂浓度等,将污泥和茶渣放入马弗炉进行炭化和活化,探究其最佳制备条件。实验得出,700℃的活化温度,1∶4的污泥茶渣配比,1h的活化时间,50%的KOH溶液为茶渣污泥基活性炭的最佳制备条件。以最佳制备条件制备的活性炭,通过改变活性炭的投加量、振荡温度、吸附质pH三个条件,研究其对去除水中CODCr的影响效果。  相似文献   

11.
以光合竹为原料,研究了其制备活性炭的工艺条件,考察了活化剂浓度、固液比、活化时间以及活化温度等因素对活性炭碘吸附值、亚甲基蓝吸附值的影响。实验结果表明,用化学法制备光合竹活性炭的最佳工艺参数为:以Zn Cl2为活化剂,Zn Cl2浓度为5 mol/L,活化剂浸渍时间为2 h,固液比为1∶4,活化时间为60 min,活化温度为500℃。在此工艺条件下所制备活性炭得率为48.8%,亚甲基蓝吸附值为197.14 mg/g,碘吸附值为1 034.30 mg/g,样品质量指标接近净化用活性炭标准。  相似文献   

12.
制药污水处理厂污泥制活性炭的研究   总被引:5,自引:1,他引:5  
研究了以制药污水处理厂污泥为原料,分别以磷酸和氯化锌为活化剂制备污泥活性炭,选取活化剂浓度、固液比、活化温度及活化时间等因素,通过正交试验确定最佳工艺参数,并以果壳作添加剂提高活性炭性能。通过静动态吸附实验,探讨了污泥活性炭作为水处理吸附剂的去除效果。结果表明:氯化锌活化,氯化锌浓度40%,活化时间30min,活化温度600℃,固液比为1∶2—1∶3,污泥活性炭对COD的静动态饱和吸附量为31.3、28.14mg/g,色度去除率>85%。  相似文献   

13.
干法制备高中孔率生物质成型活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
以锯末为原料,氯化锌为活化剂,不添加黏结剂,采用干法混合后直接成型活化制备高中孔率生物质成型活性炭。为考察这种工艺的可行性,通过单因素实验,以亚甲基蓝吸附值为评价指标,考察了盐料比、活化温度、活化时间与成型密度对生物质成型活性炭吸附性能的影响,得出较优工艺条件为:盐料比1.0:1,活化温度950℃,活化时间为60min,成型密度为1.4g·cm-3。在此工艺条件下制备得到的生物质成型活性炭,其亚甲基蓝吸附值为387mg·g-1,BET比表面积为2104m2·g-1,平均孔径为3.11nm,总孔容为1.63cm3·g-1,中孔孔容为1.17cm3·g-1,中孔率高达71.8%,初步证明了干法制备高中孔率生物质成型活性炭工艺的可行性。  相似文献   

14.
易牡丹  丘克强 《化工学报》2012,63(11):3716-3722
以一种全新的物质--阻燃的FR-1型酚醛树脂电路板基板的真空热解炭渣为原料,采用CO2和KOH活化法制备高性能的活性炭。分别研究了CO2活化法中的活化温度和KOH活化法中的碱炭比对活性炭产品性能的影响。用氮气吸附表征了活性炭的孔结构性质,并检测了产品的亚甲基蓝值和碘值。结果表明,KOH活化所得活性炭有更高的亚甲基蓝值(928.3 mg·g-1 vs 231.5 mg·g-1)、碘值(2442.2 mg·g-1 vs 946.6 mg·g-1)、比表面积(2289 m2·g-1 vs 1198 m2·g-1)和孔体积(1.317 cm3·g-1 vs 0.703 cm3·g-1)。所得产品均达到国家一级品标准。用这种原料制备高性能活性炭不仅解决了废弃物资源化的问题,还开发出一种新的、廉价的制备高性能活性炭的原料和方法工艺。  相似文献   

15.
利用分解反应中大比例质量损失和大量气体产生,制备出具有40.369m2·g-1大比表面积的多孔FeF2材料。多孔结构为FeF2材料构建了优异的离子和电子导电通路,表现出优秀的倍率性能和循环性能。在2C、5C和15C的倍率下分别表现出589.21mAh·g-1、406.95mAh·g-1和83.53mAh·g-1的高放电比容量。在0.5C和2C下,循环100次后放电比容量分别为502.5mAh·g-1和267.9mAh·g-1。该结果为电池正极材料提升倍率性能提供了新思路。  相似文献   

16.
以巴旦杏核壳为原料,采用微波辐照法制备活性炭。考察了活化条件对活性炭得率和吸附性能的影响。研究结果表明,在活化剂种类、活化剂用量、微波功率和辐照时间4个因素中,微波辐照时间对活性炭质量指标影响最大,延长时间可以提高其产品的得率和吸附性能。巴旦杏核壳基质活性炭的最佳制备工艺:巴旦杏核壳10g,固液比1:3(g:mL),磷酸质量分数40%、浸溃24h,微波功率640W、活化时间16min。在此条件下制得的活性炭的亚甲基蓝吸附值为231.5mg/g,活性炭得率为56.8%。二级动力学模型能很好的描述巴旦杏核壳活性炭对亚甲基蓝大分子的吸附动力学过程。吸附符合Freundlich吸附等温线方程。  相似文献   

17.
磷酸活化微波辐照花生壳制备活性炭   总被引:3,自引:0,他引:3  
以花生壳为原料、磷酸为活化剂,微波加热制备活性炭。研究了活化剂浓度、料液比、微波功率、活化时间对活性炭吸附性能及收率的影响。采用单因素实验,以活性炭的亚甲基蓝脱色力为考察指标,确定了微波辐照花生壳制备活性炭的最佳工艺条件为:活化剂浓度为40%,料液比为1∶3,微波功率为462 W,活化时间为20 min。  相似文献   

18.
为了高效洗脱风化壳淋积型稀土矿残留铵盐,研究了风化壳淋积型稀土矿中主要粘土矿物(蒙脱土、埃洛石、伊利石、高岭土)、石英、云母、长石对NH+4的吸附行为和机理。结果表明,蒙脱土、埃洛石、伊利石、高岭土、石英、云母、长石及稀土矿对NH+4的吸附属于单分子层吸附,符合Langmuir等温吸附模型,对NH+4的最大吸附量分别为4.1 mg·g-1、1.5 mg·g-1、0.9 mg·g-1、0.3 mg·g-1、0.1 mg·g-1、0.1 mg·g-1、0.2 mg·g-1、3.4 mg·g-1;粘土矿物对NH+4的吸附亲和力大小顺序为:蒙脱土>埃洛石>伊利石>高岭土;石英、云母、长石对NH+4<...  相似文献   

19.
以城市污水厂污泥为原料,软锰矿为催化剂,氯化锌为活化剂,通过微波活化工艺制备污泥活性炭。研究了软锰矿添加量、微波功率、微波辐照时间和氯化锌浓度等对活性炭亚甲基蓝吸附值的影响,确定了适宜的制备污泥活性炭的工艺条件:软锰矿添加量为0.4%、微波活化处理功率500W、活化时间5min、氯化锌浓度40%,在此条件下所得污泥活性炭MSAC-1的亚甲基蓝吸附值最高可以达到92.2mg/g,利用该活性炭处理活性艳红X-3B染料废水,脱色率最高可达95%。  相似文献   

20.
以石油焦为原料,KOH为活化剂,通过微波辐照制备活性炭,考察了各因素对活性炭吸附CO2性能的影响。CO2吸附效果最佳时的工艺条件为糠醛渣掺比量10%,剂炭比5誜1,微波功率1 200 W,辐照时间10 min,在此工艺条件下所得样品的CO2吸附值为236.2 mg.g-1;同时,研究发现微波法制备的活性炭与电炉法所制备的活性炭对CO2的吸附效果相接近,但微波法极大地缩短了反应时间。低温下微波法制备的活性炭CO2吸附效果较好,再生性能好,掺入适量糠醛渣有助于提高其对CO2吸附效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号