首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use is made of the transport of organic solvents such as benzene, toluene and xylene to understand the interfacial interaction in cross-linked coir-fiber-reinforced natural rubber composites. Attempts were made to analyze the interfacial bonding in the composites containing coir fibers subjected to different chemical treatments. Based on experiments, a probable mechanism of transport is suggested. The diffusion coefficient and solubility in the rubber compound–solvent system have been evaluated. The swelling of composites containing untreated and NaOH-treated coir increased initially with fiber loading, but decreased at higher levels of fiber loading. But the swelling of composites which contained coir fiber treated with solutions of NaOH, toluene diisocyanate and natural rubber decreased gradually with fiber loading. It was also found that the swelling of this composite was the least. This is due to the high interfacial interaction between the fiber and the matrix which resists the uptake of organic solvents. It was seen that silica was not a necessary constituent of the bonding system for coir fiber reinforced natural rubber composites.  相似文献   

2.
The water absorption pattern and associated dimensional changes and solid loss of oil palm fiber–linear low density polyethylene composites was studied. The effects of fiber size (425–840, 177–425, and 75–177 μ), fiber loading (0, 10, 20, 30, 40, and 50%), and time of immersion (192 h at an interval of 24 h) on these parameters were also studied. Alkali treatment of fibers was done to reduce the hydrophilic nature of the composites and its effect was studied. It was found that the water absorption in most of the combinations followed typical Fickian behavior. The rate of water absorption and swelling increased with fiber loading. However, alkali treatment of the fibers resulted in a reduction of water absorption at higher fiber loadings only, and composites with higher fiber sizes exhibited higher water absorption. A sharp increase in the thickness swelling was observed in the initial days of immersion, which remained constant thereafter. The thickness swelling also increased with fiber size; however, a constant trend was not observed for the 75–177 μ fiber size. In addition to thickness swelling, composites also expanded linearly during water absorption; however, linear expansion was considerably less than thickness swelling. Higher fiber loading and alkali treatment caused more linear expansion. We observed that maximum solid loss on water immersion occurred with small‐sized and also alkali‐treated fiber composites. An increase in thickness and a decrease in linear dimension were observed after one sorption–desorption cycle. This irreversible change was also found to be proportional to fiber loading and alkali treatment. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Short sisal fiber-reinforced styrene butadiene rubber (SBR) composites were prepared and characterized by the restricted solvent swelling technique. The solvent swelling characteristics of SBR composites containing untreated and bonding agent-added mixes were investigated in a series of aromatic solvents, such as benzene, toluene, and xylene. The diffusion experiments were conducted by the sorption gravimetric method. The adhesion between the rubber and short sisal fibers was evaluated from the restricted equilibrium swelling measurements. The anisotropy of swelling of the composite was confirmed by this study. The effect of fiber orientation in controlling the anisotropy of restricted swelling was also demonstrated. As the fiber content increased, the solvent uptake decreased, due to the increased hindrance and good fiber-rubber interactions. Bonding agent-added mixes showed enhanced restriction to swelling, due to the strong interfacial adhesion. The bonding system containing hexa-resorcinol in the mix produces an in-situ resin, which binds the fiber and the rubber matrix firmly. In addition, as the penetrant size increases from benzene to xylene, the uptake decreases. The swelling index values of the composites support this observation. Due to the improved adhesion between the short sisal fiber and SBR, the ratio of the volume fraction of rubber in the dry composite sample to the swollen sample (V T) decreases. The extent of fiber orientation of the composites was also analysed from the restricted swelling method. SEM studies of the composite revealed the orientation of short fibers. The sorption data support the Fickian diffusion trend, which is typical in the case of cross-linked rubbers.  相似文献   

4.
The stress relaxation behavior of natural rubber (NR) and its composites reinforced with short coir fibers under tension was analyzed. The rate of stress relaxation was a measure of the increase in the entropy of the compounds: the higher the rate was, the greater the entropy was. At lower strain levels, the relaxation mechanism of NR was independent of strain level. However, the rate of relaxation increased with the strain level. Also, the strain level influenced the rate of stress relaxation considerably in the coir‐reinforced NR composites. However, the relaxation mechanisms of both the unfilled compound and the composite were influenced by the strain rate. The rate of relaxation was influenced by fiber loading and fiber orientation. From the rate of stress relaxation, we found that fiber–rubber adhesion was best in the composite containing fibers subjected to a chemical treatment with alkali, toluene diisocyanate, and NR solutions along with a hexaresorcinol system as a bonding agent. In this study, the stress relaxation curves could not be viewed as segments with varying slopes; however, a multitude of inflection points were observed on the curves. Hence, we propose neither a two‐step nor three‐step mechanism for the coir‐fiber‐reinforced NR composites as reported for some other systems. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 96–104, 2004  相似文献   

5.
Natural rubber is reinforced with untreated coir fiber chopped to different lengths, viz., 6, 10, and 14 mm. Mixes were also prepared using 10 mm-long coir fibers treated with 5% sodium hydroxide solution for different time intervals, viz., 4, 24, 48, and 72 h. These composites were vulcanized at 150°C. The vulcanization parameters, processability characteristics, and stress–strain properties of these composites were analyzed. The rubbercoir interface bonding was improved by the addition of a resorcinol–hexamethylenetetramine dry-bonding system. The reinforcing property of the alkali-treated fiber was compared with that of the untreated one. The extent of fiber orientation in the composite was determined from green strength measurements. From anisotropic swelling studies, the extent of fiber alignment and the strength of fiber–rubber interface adhesion were analyzed. Scanning electron microscopic studies were carried out to investigate the fiber surface morphology, fiber pullout, and fiber–rubber interface. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The conventional gravimetric method and positron lifetime spectroscopy have been used to investigate the effect of glass fiber orientation on the diffusion behavior of seawater in epoxy-based composite samples with glass fiber orientations of 0 and 45°. The equilibrium mass uptake of seawater in 45 and 0° orientation composites has been found to be 2.77 and 1.57%, respectively. The diffusion process is non-Fickian in a 45° fiber oriented composite, whereas it is Fickian in a 0° oriented composite. Free-volume data for 45° fiber oriented composites indicates swelling upon the sorption of seawater leading to structural relaxation, and hence the diffusion becomes non-Fickian. On the other hand, a 0° fiber orientation sample exhibits no swelling, and this suggests that water diffusion to the fiber–resin interface through the resin matrix is impeded by the large number of bonds. A polymer–fiber interaction parameter determined from these results also further supports the idea that interface interaction in a 45° fiber oriented composite is less than that in a 0° fiber oriented composite. Positron and gravimetric results support this argument. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
In this study, high‐density polyethylene/agave‐coir composites with two fiber contents (20 and 30 wt%) and different coir‐agave fiber ratios (1–0, 0.8–0.2, 0.6–0.4, 0.4–0.6, 0.2–0.8, and 0–1) were produced in a two‐step process using twin‐screw extrusion followed by injection molding. The effect of mixing two different natural fibers and the addition of coupling agent on water absorption, mechanical properties, and morphology is reported. The rule of hybrid mixture was used to predict the properties of the composites, showing a good agreement with the experimental data. The results obtained showed that the combination of different fibers produces composites with unique characteristics as coir fibers absorb less water than agave fibers, while at the same time increase more tensile and flexural strengths. On the other hand, agave fibers were found to improve the impact strength of coir composites. Also, the effect of water absorption on the mechanical properties was studied. Finally, the use of a coupling agent had a positive effect on mechanical properties, while lowering water uptake. POLYM. COMPOS., 37:3015–3024, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
Detailed analysis of the effects of recycling process on long‐term water absorption, thickness swelling, and water desorption behavior of natural fiber high‐density polyethylene composites is reported. Composite materials containing polyethylene and wood flour, rice hulls, or bagasse fibers and 2% compatibilizer were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis, Fourier transform infrared spectroscopy, and tensile tests were employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models and a mathematical model was developed for water desorption at constant temperature. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process. Water desorption was found to be faster after recycling. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
Hybrid composites were fabricated by compounding process with varying the relative weight fraction of oil palm empty fruit bunch (EFB) and coir fibers to assess the effect of hybridization of oil palm EFB with coir fibers in polypropylene (PP) matrix. The mechanical and morphological properties of oil palm/coir hybrid composites were carried out. Tensile and flexural properties of oil EFB‐PP composites enhanced with hybridization of coir fibers except coir/oil palm EFB (25:75) hybrid composite, whereas highest impact properties at oil palm:coir fibers with 50:50 ratios. Results shown that hybrid composites with oil palm:coir fibers with 50:50 ratios display optimum mechanical properties. In this study, scanning electron microscopy (SEM) had been used to study morphology of tensile fractured surface of hybrid composites. Its clear from SEM micrograph that coir/EFB (50:50) hybrid composites display better tensile properties due to strong fiber/matrix bonding as compared with other formulations which lead to even and effective distribution of stress among fibers. The combination of oil palm EFB/coir fibers with PP matrix produced hybrid biocomposites material can be used to produce components such as rear mirrors' holder and window levers, fan blades, mallet, or gavel. POLYM. COMPOS., 35:1418–1425, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
《Polymer Composites》2017,38(7):1259-1265
Chemical treatment of reinforcement material is one of the main ways of improving the mechanical properties of natural fiber reinforced polymer composites. In the present study, coir fiber was used as reinforcement material, while polypropylene (PP) and polyethylene (PE) polymer were used as matrix material. Before reinforcing with polymer, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate in a sieve shaker. Hot‐pressed method was used for composite manufacturing during which the fiber loading was varied at 0, 5, 10, 15, and 20 wt%. Comparison of the properties of raw and chemically treated coir fiber reinforced PP and PE was conducted. Mechanical characteristics of the composites were evaluated using tensile, flexural, impact, and hardness tests. Water absorption test was conducted to know water uptake characteristics. Microstructural analysis using a scanning electron microscope was performed to observe the adhesiveness between the matrix and the fiber. Thermogravimetric analysis was done to observe the physical and chemical changes in fiber and composites. The results showed that chemical treatment improved the physical, mechanical, and thermal properties of the manufactured composites. PP composites had better properties as compared to PE composites, while higher fiber loading resulted in better mechanical properties of the resultant composites. POLYM. COMPOS., 38:1259–1265, 2017. © 2015 Society of Plastics Engineers  相似文献   

12.
Processing characteristics, anistropic swelling, and mechanical properties of short-jute-fiber-and short-glass-fiber-reinforced styrene–butadiene rubber (SBR) composites have been studied both in the presence and absence of carbon black. Tensile and tear fracture surfaces of the composites have been studied using scanning electron microscopy (SEM) in order to assess the failure criteria. The effects of bonding agent. carbon black, jute fiber, and glass fiber on the fracture mode of the composites have also been studied. It has been found that jute fiber offers good reinforcement to SBR as compared to glass fibers. The poor performance of glass fibers as reinforcing agent is found to be mainly due to fiber breakage and poor bonding between fiber and rubber. Tensile strength of the fiber–SBR composites increases with the increase in fiber loading in the absence of carbon black. However, in the presence of carbon black a minimum was observed in the variation of strength against fiber loading. SEM studies indicate that fracture mode depends not on the nature of the fiber but on the adhesion between the fiber and the matrix.  相似文献   

13.
Coir and abaca fiber‐reinforced linear low density polyethylene (LLDPE) composites (30 wt% fiber) were prepared by compression molding. Coir and abaca fibers were treated with methyl methacrylate (MMA) using ultraviolet radiation to improve the mechanical properties of the composites. Concentration of MMA and radiation dose was optimized. It was found that 30% MMA in methanol along with photoinitiator Darocur‐1173 (2%) and 15th pass of radiation rendered better performance. Chemically treated fiber‐reinforced specimens yielded better mechanical properties compared to the untreated composites, whereas coir fiber composites had better mechanical properties than abaca fiber reinforced ones. For the improvement of the properties, optimized coir (coir fiber treated with 30% MMA) and abaca (abaca fiber treated with 40% MMA) fibers were again treated with aqueous starch solution (2%–8%, w/w) for 2–7 min. Composites made of 3%‐starch‐treated coir fiber (5 min soaking time) showed the best mechanical properties than that of abaca‐fiber‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
In the present work chemically treated coir reinforced polypropylene composites were fabricated by injection molding method. Raw coir was chemically treated by a simple two-step reaction. The mechanical properties of the treated coir reinforced polypropylene (PP) composites were found to be much improved compared to the corresponding values of the untreated ones. Water absorption of the composites increased with an increase in fiber content. However, treated coir-PP composites showed lower water uptake capacity compared to those prepared from untreated coir, indicating that upon chemical treatment the number of hydroxyl groups in the cellulose of coir has decreased, giving reduced the hydrophilic nature of the fiber. The surface morphology of the composites obtained from scanning electron microscopy (SEM) showed that raw coir-PP composites possess microvoids, fiber agglomerates and surface roughness with extruded fiber moieties. However, due to favorable interaction between the treated coir and the PP matrix, agglomerates and micro-voids in the composites have largely minimized showing better dispersion of the fiber in the matrix. It was concluded that upon surface modification hydrophilic nature of coir has largely minimized, giving better fiber-matrix interfacial adhesion and improved mechanical properties of the composites.  相似文献   

15.
《分离科学与技术》2012,47(1):40-62
Abstract

The potential of coir, a low cost lignocellulosic material, was assessed for the removal of Cu(II) ion from aqueous solutions of copper sulphate. The coir fiber was also modified by an oxidative treatment, whereby the maximum uptake of Cu(II) increased to 6.99 mg/g as compared to 2.54 mg/g for the unmodified coir. A Langmuir type of adsorption was followed by oxidized coir fiber. A second order rate equation was observed for the Cu(II) uptake. The lowering of pH adversely affects adsorption on both the materials. Almost complete desorption of the loaded Cu(II) was possible using 0.25 N hydrochloric acid. The materials retained the adsorptive capacity up to three cycles when an intermediate regeneration step was given with dilute sodium hydroxide solution. In a fixed column packed with oxidized coir fibers, it was observed that the breakthrough time decreased with an increase in inlet Cu(II) concentration. The desorption level in the fixed bed column was around 90% and the column was regenerated and used up to eight cycles. The fixed bed column packed with oxidized coir was used to remove Cu(II) from an electrochemical industrial effluent. An ion exchange mechanism has been proposed for uptake of Cu(II) on the oxidized coir fiber.  相似文献   

16.
Biocomposites are prepared from a cheap, renewable natural fiber, coir (coconut fiber) as reinforcement with a biodegradable polyester amide (BAK 1095) matrix. In order to have better fiber‐matrix interaction the fibers are surface modified through alkali treatment, cyanoethylation, bleaching and vinyl grafting. The effects of different fiber surface treatments and fiber amounts on the performance of resulting bio‐composites are investigated. Among all modifications, cyanoethylated coir‐BAK composites show better tensile strength (35.50 MPa) whereas 7% methyl methacrylate grafted coir‐BAK composites show significant improvement in flexural strength (87.36 MPa). The remarkable achievement of the present investigation is that a low strength coir fiber, through optimal surface modifications, on reinforcement with BAK show an encouraging level of mechanical properties. Moreover, the elongation at break of BAK polymer is considerably reduced by the incorporation of coir fibers from nearly 400% (percent elongation of pure BAK) to 16‐24% (coir‐BAK biocomposites). SEM investigations show that surface modifications improve the fiber‐matrix adhesion. From biodegradation studies we find that after 52 days of soil burial, alkali treated and bleached coir‐BAK composites show significant weight loss. More than 70% decrease in flexural strength is observed for alkali treated coir‐BAK composites after 35 days of soil burial. The loss of weight and the decrease of flexural strength of degraded composites are more or less directly related.  相似文献   

17.
The rheological characteristics of short nylon-6 fiber-reinforced acrylonitrile butadiene rubber (NBR) were studied with respect to the effect of shear rate, fiber concentration, and temperature on shear viscosity and die swell using a capillary rheometer. All the melts showed pseudoplastic nature, which decreased with increasing temperature and in the presence of short fibers. Shear viscosity was increased in the presence of fibers. Die swell was reduced in the presence of fibers. Relative viscosity of the gum compound was less than one at all shear rates and temperatures. Activation energy of flow of the composite-containing bonding agent was higher at higher fiber loading and higher shear rates. Die swell increased marginally in the presence of the bonding agent.  相似文献   

18.
Short fibers of natural cellulose treated to provide dispersability and strong interfacial bonding are ideal reinforcements for plasticized vinyl compounds. The development of substantial strength and stiffness in unidirectional composites indicates the reinforcing potential of these high aspect-ratio fibers in soft compositions. Special extrusion dies developed to control fiber directionality in rubber extrudates are equally applicable to vinyl hose. The unusual expanding geometry of these tools aligns the fibers toward the circumferential direction to provide optimum reinforcement against contained pressure loading. Thus, reinforced poly(vinyl chloride) air and water hoses can be produced in a single extrusion step, since all of the necessary reinforcement is contained in the compound.  相似文献   

19.
Jute and coir fiber‐reinforced polypropylene (PP) composites (45 wt% fiber) were prepared by compression molding. Composites were fabricated with irradiated jute fiber/irradiated PP and irradiated coir fiber/irradiated PP at different doses (250–1,000 krad). It was revealed that jute‐based composites had better mechanical properties as compared to coir‐based composites. Interfacial shear strength of jute/PP and coir/PP systems was measured by using the single‐fiber fragmentation test. Scanning electron microscopy investigation shows poor fiber matrix adhesion for coir‐based composites than that of jute‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jute–coir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. Hailwood–Horrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号