首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jute fabric‐reinforced sandwich composites were fabricated using engineering thermoplastics. The jute fabrics were precoated with thermosetting resin to improve their thermal resistance before molding of the composites. Thermal gravimetric analysis (TGA) studies revealed that the resin coated fabrics decomposed at higher temperature than the uncoated jute. The onset of degradation of the coated fibers also falls between that of jute fibers and the thermoset resins. This indicates the presence of good interfacial bonding between jute fibers and both resins. Isothermal TGA studies revealed that jute could withstand brief exposure to higher temperature at 270 and 290°C. The sandwich composites were fabricated at 270°C by compression molding for 1.5 and 3 min in each case, and then characterized by flexural, tensile and morphological studies, i.e., SEM and optical microscopy. The uncoated jute fabric yielded composites of superior mechanical properties even with 3 mins molding at 270°C which is close to the degradation temperature of uncoated jute fibers. This is an indication that it is feasible to prepare jute fiber filled engineering polymer composites provided the exposure time at high temperature during processing does not exceed 3 mins as determined by TGA isothermal studies. SEM studies revealed strong fiber/matrix interfacial bonding between jute and the thermoset resins while the inferior mechanical properties of the resin coated sandwich composites could be attributed to the poor interfacial bonding between the already cured thermoset coating and the matrix based on optical microscopy of the polished cross‐sections. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
In this study, randomly oriented short jute/bagasse hybrid fiber‐reinforced epoxy novolac composites were prepared by keeping the relative volume ratio of jute and bagasse of 1:3 and the total fiber loading 0.40 volume fractions. The effect of jute fiber hybridization and different layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber‐reinforced epoxy novolac composites was investigated. The hybrid fiber‐reinforced composites exhibited fair water absorption and thickness swelling properties. To investigate the effect of layering pattern on thermomechanical behavior of hybrid composites, the storage modulus and loss factor were determined using dynamic mechanical analyzer from 30 to 200°C at a frequency of 1 Hz. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy. The morphological features of the composites were well corroborated with the mechanical properties. Thermogravimetric analysis indicated an increase in thermal stability of pure bagasse composites with the incorporation of jute fibers. The incorporation of hybrid fibers results better improvement in both thermal and dimensional stable compared with the pure bagasse fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
《Polymer Composites》2017,38(7):1327-1334
Surface modification of jute fibers is necessary to improve the adhesion and interfacial compatibility between fibers and resin matrix before using fibers in polymer composites. In this study, dodecyl gallate (DG) was enzymatically grafted onto the jute fiber by laccase to endow the fiber with hydrophobicity. A hand lay‐up technique was then adopted to prepare jute/epoxy composites. Contact angle and wetting time measurements showed that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification. The water absorption and thickness swelling of the DG‐grafted jute fabric/epoxy composite were lower than those of the other composites. The tensile and dynamic mechanical properties of the jute/epoxy composites were enhanced by the surface modification. Scanning electron microscopy images revealed stronger fiber–matrix adhesion in composites with modified fibers. Therefore, the enzymatic graft modification increased the fiber–matrix interface area. The fiber–matrix adhesion was enhanced, and the mechanical properties of the composites were improved. POLYM. COMPOS., 38:1327–1334, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
Although economic, ecological, processing and property considerations suggest that it is very attractive to use lignocellulosic fibers as reinforcement in polymer matrix composites, moisture can strongly and deleteriously affect their properties. In this work the water absorption behavior of sisal/cotton, jute/cotton and ramie/cotton hybrid fabric reinforced composites is evaluated. The effect of the temperature of immersion, fiber volume fraction, and predrying of the fabrics before their incorporation onto the composites are evaluated. Sisal was shown to be the most hygroscopic of the fibers analyzed, and its presence leads to higher values of the maximum water content and of the diffusion coefficient of sisal/cotton reinforced composites. Under the range of temperatures analyzed (30–60°C) the volume fraction of the fibers, rather than the temperature itself, was shown to be the main parameter governing water absorption. Predrying usually lowers maximum water content, although for sisal/cotton reinforced composites a reverse trend was observed for the composites with higher volume fractions. This behavior was again attributed to the higher hydrophilic behavior of sisal fibers.  相似文献   

5.
Cyanoethylation of jute fibers in the form of nonwoven fabric was studied, and these chemically modified fibers were used to make jute–polyester composites. The dynamic mechanical thermal properties of unsaturated polyester resin (cured) and composites of unmodified and chemically modified jute–polyester were studied by using a dynamic mechanical analyzer over a wide temperature range. The data suggest that the storage modulus and thermal transition temperature of the composites increased enormously due to cyanoethylation of fiber. An increase of the storage modulus of composites, prepared from chemically modified fiber, indicates its higher stiffness as compared to a composite prepared from unmodified fiber. It is also observed that incorporation of jute fiber (both unmodified and modified) with the unsaturated resin reduced the tan δ peak height remarkably. Composites prepared from cyanoethylated jute show better creep resistance at comparatively lower temperatures. On the contrary, a reversed phenomenon is observed at higher temperatures (120°C and above). Scanning electron micrographs of tensile fracture surfaces of unmodified and modified jute–polyester composites clearly demonstrate better fiber–matrix bonding in the case of the latter. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1505–1513, 1999  相似文献   

6.
Jute fabric was coated with natural rubber to develop double‐texture rubberized waterproof fabric and fabric‐reinforced rubber sheeting for hospitals. The vulcanization of such natural‐rubber‐coated flexible composites at 120°C for 3 h produced optimum effects. The jute/natural‐rubber composite was much superior to a conventional polyester/natural‐rubber composite for producing such double‐texture rubberized fabric with respect to the fabric‐to‐natural‐rubber adhesion, breaking strength, tear strength, abrasion resistance, puncture resistance, and biodegradability. For fabric‐reinforced rubberized sheeting, the jute/natural‐rubber composite was superior to a conventionally used cotton/natural‐rubber composite with respect to the fabric‐to‐natural‐rubber adhesion, breaking strength, tear strength, and abrasion resistance. However, for both applications, the jute‐based products were commonly found to be less extensible, heavier, and thicker. Unsaturation in the lignin fraction of jute established a chemical linkage with the unsaturation of natural rubber via sulfur at the jute/natural‐rubber interface. An examination of the surface morphology of uncoated and coated jute fabrics by scanning electron microscopy revealed a good degree of deposition and filling even in the intercellular regions of jute by a cohesive mass of natural rubber, which remained unseparated from the fiber, when mechanical force was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 484–489, 2005  相似文献   

7.
Two-dimensional (2D) carbon/carbon composites were prepared with phenol-formaldehyde resin and a commercial stabilized PAN fabric. The effect of pyrolysis on the microstructure and flexural strength of the composites during the carbonization process was studied. The interaction between fabric and matrix inhibited the decomposition and the thermal fragmentation, leading to a higher carbon yield for the final composition. Because of the formation of strong bonding in the fiber/matrix interface, the composites made with stabilized PAN fabric showed catastrophic failure and low flexural strength below carbonization temperatures of 600°C. Above 600°C, the flexural strength of the composites increased with the increase in the carbonization temperatures, even when the fracture behavior showed catastrophic failure.  相似文献   

8.
The tensile and impact behavior of jute fabrics—polyester composites–were evaluated as a function of the fabric style (knitted or weaved cloths), fiber weight fraction, and direction of the applied load. The tensile properties of plain-weave-fabric-reinforced composites (PWF) were higher than those of plain weft knit cloth composites (WKT) and were dependent on fiber content and test direction. The properties of the WKT, however, were independent of these variables. The results obtained indicate that the orthogonal fiber alignment of weaved cloths favors anisotropy, while the interconnected loops in knit fabrics favors isotropy. The results also indicate weak fiber-matrix interactions in both fabrics and a better fabric impregnation for the plain weave fabric if compared with that of the knit fabric. The impact strengths of both composites were higher than that of the matrix and were shown to increase with fiber content. WKT-reinforced composites showed better impact absorption capacity than PWF composites. This behavior is attributed to the influence of the weaving pattern of the fabrics and to the differences in fabric impregnation by the matrix.  相似文献   

9.
A stabilized PAN fabric was carbonized and graphitized from 800°C to 2500°C. Two-dimensional (2D) carbon/carbon composites were made using the stabilized PAN fabric, carbonized fabrics, and a resol-type phenol-formaldehyde resin. These composites were heat-treated from 600°C to 2500°C. The influence of different heat-treated fabrics and heat treatment on the fracture and flexural strength of these composites was also studied. The composite reinforced with higher heat-treated fabrics showed a lower weight loss than that with lower heat-treated fabrics. When the composites were graphitized at 2500°C, the loss was 49.7 wt% for the composite made with stabilized PAN fabric and 26 wt% for that with carbonized fabric at 2500°C. Those composites also have a higher density than composites produced by other methods. Composites made with stabilized PAN fabric exhibited a strong bonding in the fiber/matrix during pyrolysis. This composite showed catastrophic fracture and a smooth fracture surface with no fiber pullout. Composites made with higher carbonized fabrics exhibited a weak interface bonding. These composites showed a pseudo-plastic fracture pattern with fiber pullout during pyrolysis. Composites made with carbonized fabrics at 2000°C and 2500°C showed the highest flexural strength at the prolysis temperature of 1000°C. Composites made with carbonized fabric at 1300°C showed the highest flexural strength above 1500°C to 2500°C. The composite made with stabilized PAN fabric exhibited the lowest flexural strength during pyrolysis.  相似文献   

10.
The aim of the present study is to investigate and compare the mechanical properties of raw jute and sisal fiber reinforced epoxy composites with sodium hydroxide treated jute and sisal fiber reinforced epoxy composites. This is followed by comparisons of the sodium hydroxide treated jute and sisal fiber reinforced composites. The jute and sisal fibers were treated with 20% sodium hydroxide for 2 h and then incorporated into the epoxy matrix by a molding technique to form the composites. Similar techniques have been adopted for the fabrication of raw jute and sisal fiber reinforced epoxy composites. The raw jute and sisal fiber reinforced epoxy composites and the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites were characterized by FTIR. The mechanical properties (tensile and flexural strength), water absorption and morphological changes were investigated for the composite samples. It was found that the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites exhibited better mechanical properties than the raw jute and raw sisal fiber reinforced composites. When comparing the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites, the sodium hydroxide treated jute fiber reinforced composites exhibited better mechanical properties than the latter.  相似文献   

11.
The present investigation deals with the thermo‐mechanical recycling of post consumer milk pouches (LDPE‐LLDPE blend) and its use as jute fiber composite materials for engineering applications. The mechanical, thermal, morphological, and dynamic‐mechanical properties of recycled milk pouch‐based jute fiber composites with different fiber contents were evaluated and compared with those of the virgin LDPE‐LLDPE/jute fiber composites. Effect of artificial weathering on mechanical properties of different formulated composites was determined. The recycled polymer‐based jute fiber composites showed inferior mechanical properties as well as poor thermal stability compared to those observed for virgin polymer/jute fiber composites. However, the jute‐composites made with (50:50) recycled milk pouch‐virgin LDPE‐LLDPE blend as polymer matrix indicated significantly superior properties in comparison to the recycled milk pouch/jute composites. Overall mechanical performances of the recycled and virgin polymeric composites were correlated by scanning electron microscopy (SEM). The dynamic mechanical analysis showed that storage modulus values were lower for recycled LDPE‐LLDPE/jute composites compared to virgin LDPE‐LLDPE/jute composites throughout the entire temperature range, but an increase in the storage modulus was observed for recycled‐virgin LDPE‐LLDPE/jute composites. POLYM. COMPOS. 28:78–88, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
The primary purpose of the study is to evaluate and compare the mechanical properties of epoxy‐based composites having different fiber reinforcements. Glass and carbon fiber composite laminates were manufactured by vacuum infusion of epoxy resin into two commonly used noncrimp stitched fabric (NCF) types: unidirectional and biaxial fabrics. The effects of geometric variables on composite structural integrity and strength were illustrated. Hence, tensile and three‐point bending flexural tests were conducted up to failure on specimens strengthened with different layouts of fibrous plies in NCF. In this article, an important practical problem in fibrous composites, interlaminar shear strength as measured in short beam shear test, is discussed. The fabric composites were tested in three directions: at 0°, 45°, and 90°. In addition to the extensive efforts in elucidating the variation in the mechanical properties of noncrimp glass and carbon fabric reinforced laminates, the work presented here focuses, also, on the type of interactions that are established between fiber and epoxy matrix. The experiments, in conjunction with scanning electron photomicrographs of fractured surfaces of composites, were interpreted in an attempt to explain the failure mechanisms in the composite laminates broken in tension. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
Environmentally friendly, biodegradable composites were prepared via overmolding of poly(lactic acid) (PLA) onto PLA/jute-mat, named as “ecosheets,” reinforced continuous fiber composite sheets. Film stacking procedure was used to prepare ecosheets via using a hot-press. The fiber orientation was changed as −45°/+45° and 0°/0°. −45°/+45° orientation exhibited higher properties as compared to 0°/0° for ecosheets; therefore, this construction was used to produce overmolded composites (OMCs). The mechanical tests showed that flexural modulus and strength of OMCs were improved in comparison to neat PLA. The dynamic mechanical analysis exhibited that the thermomechanical resistance of PLA was enhanced for OMCs. Scanning electron microscopy investigation showed that the jute/PLA interphase needs to be improved to further increase the properties. It was concluded that one of the biggest advantages of this novel technique was the increase of mechanical properties of PLA without altering the density. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48692.  相似文献   

14.
Star‐shaped bio‐based resins were synthesized by direct condensation of lactic acid (LA) with xylitol followed by end‐functionalizing of branches by methacrylic anhydride with three different LA chain lengths (3, 5 and 7). The thermomechanical and structural properties of the resins were characterized by 13C NMR, Fourier transform IR spectroscopy, rheometry, DSC, dynamic mechanical analysis (DMA), TGA and flexural and tensile tests. An evaluation of the effect of chain length on the synthesized resins showed that the resin with five LAs exhibited the most favorable thermomechanical properties. Also, the resin's glass transition temperature (103 °C) was substantially higher than that of the thermoplast PLA (ca 55 °C). The resin had low viscosity at its processing temperature (80 °C). The compatibility of the resin with natural fibers was investigated for biocomposite manufacturing. Finally, composites were produced from the n5‐resin (80 wt% fiber content) using jute fiber. The thermomechanical and morphological properties of the biocomposites were compared with jute‐PLA composites and a hybrid composite made of the impregnated jute fibers with n5 resin and PLA. SEM and DMA showed that the n5‐jute composites had better mechanical properties than the other composites produced. Inexpensive monomers, good thermomechanical properties and good processability of the n5 resin make the resin comparable with commercial unsaturated polyester resins. © 2017 Society of Chemical Industry  相似文献   

15.
Two types of long jute fiber pellet consisting of twisted‐jute yarn (LFT‐JF/PP) and untwisted‐jute yarn (UT‐JF/PP) pellets are used to prepare jute fiber–reinforced polypropylene (JF/PP) composites. The mechanical properties of both long fiber composites are compared with that of re‐pelletized pellet (RP‐JF/PP) of LFT‐JF/PP pellet, which is re‐compounded by extrusion compounding. High stiffness and high impact strength of JF/PP composites are as a result of using long fiber. However, the longer fiber bundle consequently affects the distribution of jute fiber. The incorporation of 10 wt % glass fibers is found to improve mechanical properties of JF/PP composites. Increasing mechanical properties of hybrid composites is dependent on the type of JF/PP pellets, which directly affect the fiber length and fiber orientation of glass fiber within hybrid composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41819.  相似文献   

16.
This paper reports some further studies on the tensile properties of plain weft knitted DuPont Kevlar fiber fabric reinforced epoxy matrix composites. One aim of this work is to investigate systematically the anisotropy of knitted fabric composites. Tensile tests were conducted at different off‐axial angles (0°, 30°, 45°, 60° and 90°) with respect to the wale direction. Fracture modes corresponding to this off‐axial variation were clearly identified. The elastic modulus and tensile strength were found to be the highest in the wale direction (0°), but decreased gradually towards the course direction (90°). This anisotropic study was carried out on both single layered and multilayered (four layered) knitted fabric composites. Another aim is to study the effect of specimen width (or number of loops per specimen width) on the tensile properties. This study indicated an optimum number of loops per sample width required to obtain meaningful tensile test results. Further, edge effect on the tensile properties of the knitted fabric composites was also investigated in the paper. This was achieved through comparative studies on cut and uncut four layered specimens. In the cut specimens the continuity of the yarns is lost at the cut edges, which show a marginal variation in the properties compared with the uncut specimens where the yarns are continuous throughout the specimen. Finally, a study was also carried out to investigate the effect of loop size (or stitch density) on the tensile strength and stiffness of the single layered composites.  相似文献   

17.
The potential of acetylation of plant fibers to improve the properties of composites was studied. The chemical modification of oil palm empty fruit bunch (EFB), coconut fiber (Coir), oil palm frond (OPF), jute, and flax using noncatalyzed acetic anhydride were investigated. Proof of acetylation was indicated by the increase in weight percent gain (WPG). Acetylation at a reaction temperature of 120°C had resulted in the reduction in the tensile properties (stress, modulus, and elongation at break) of EFB and Coir composites. However, at 100°C, the acetylated samples exhibited improved properties. The mechanical properties of acetylated EFB- and Coir-fiber-reinforced polyester composites was evaluated at different fiber loadings. The tensile strength and modulus were improved, but elongation at break was slightly reduced upon acetylation, particularly at high fiber loading. Impact properties were moderately increased for those composites with fiber loadings up to 45%. Acetylation exhibited a low moisture absorption, comparable with glass-fiber composites. Acetylated EFB and Coir composites showed superior retention of tensile and impact properties after aging in water up to 12 months.  相似文献   

18.
为了代替传统的钢制鱼尾板与绝缘部件组成的"机械绝缘接头",通过拉挤成型制备了连续玻璃纤维(GF)质量分数高达70.5%的聚氨酯/玻璃纤维(PUR/GF)复合材料。分别对复合材料在0°和90°方向进行了拉伸、弯曲和压缩性能测试;同时,结合扫描电子显微镜(SEM)观察了拉伸断口,分析了GF在PUR基体中的分布情况及复合材料在拉伸试验中的断裂机理。研究结果表明,0°方向的拉伸强度、弯曲强度以及压缩强度都有很明显的提高,且均符合钢轨鱼尾板的强度标准。  相似文献   

19.
In this article, mechanical performance of isothalic polyester‐based untreated woven jute‐fabric composites subjected to various types of loading has been experimentally investigated. The laminates were prepared by hand lay‐up technique in a mold. Specimens for tests were fabricated as per ASTM standards. All the tests (except impact) were conducted on closed loop servo hydraulic MTS 810 material test system using data acquisition software Test Works‐II. From the results obtained, it was found that the tensile strength and tensile modulus of jute‐fabric composite are 83.96% and 118.97% greater than the tensile strength and modulus of unreinforced resin, respectively. The results of other properties, such as flexural, in‐plane shear, interlaminar shear, impact, etc., also revealed that the isothalic‐polyester‐based jute‐fabric composite have good mechanical properties and can be a potential material for use in medium load‐bearing applications. The failure mechanism and fiber‐matrix adhesion were analyzed by scanning electron microscope. Effects of long‐term immersion in water on mechanical properties are also presented. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2650–2662, 2007  相似文献   

20.
In the present study, randomly aligned jute fiber/poly(lactic acid) (PLA) and two-directionally aligned jute fabric/PLA green composites with jute (50% by weight) treated with electron beam at different dosages (0, 5, 10, 30, 50, and 100?kGy) were fabricated by compression molding technique and the effect of electron beam treatment on their thermal properties was investigated in terms of thermal expansion, thermal stability, dynamic mechanical thermal property, and heat deflection temperature (HDT). The dynamic storage modulus and HDT of neat PLA were significantly increased by incorporating jute fibers or fabrics into PLA, whereas the coefficient of thermal expansion (CTE) and the damping property were decreased, reflecting the enhancement in the interfacial adhesion between the jute and the PLA by electron beam treatment with an optimal dosage of 10?kGy and the reinforcing effect by jute. The result exhibited that the thermal stability, storage modulus, and HDT of jute/PLA green composites were highest with the electron beam irradiation of jute at 10?kGy and lowest at 100?kGy, whereas the CTE and tan δ were lowest at 10?kGy and highest at 100?kGy. The thermal behavior of random jute/PLA green composites shows a similar tendency to that of 2D jute/PLA counterparts and the influence of electron beam irradiation on the thermal properties studied was consistent with each other. The thermomechanical analysis, dynamic mechanical thermal analysis, thermogravimetric analysis, and HDT results were in agreement with each other, showing a comparable effect of electron beam irradiation on composites thermal characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号