首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The low‐velocity impact behavior of a continuous glass fiber/polypropylene composite was investigated. Optical microscopy and ultrasonic scanning were used to determine the impact‐induced damage. At low impact energy, the predominant damage mechanism observed was matrix cracking, while at high energy the damage mechanisms observed were delamination, plastic deformation, which produced a residual specimen curvature, and a small amount of fiber breakage at the edge of the indentation on the impacted face of the specimens. The impact load vs. time signals were recorded during impact and showed that the load corresponding to the onset of delamination was independent of the impact energy in the range tested. The load at which the onset of delamination occurred corresponded to the values obtained by performing a linear regression of the delaminated area, obtained by ultrasonic scanning, as a function of the impact force. Tensile and flexural tests performed on impacted specimens showed that the tensile and flexural residual strengths and the flexural modulus decreased with increasing incident impact energy, while the post‐impact residual tensile modulus remained constant. The dynamic interlaminar fracture toughness was evaluated from the critical dynamic (impact) strain energy release rate of specimens with a delamination simulated by an embedded insert. The results are compared with the interlaminar fracture toughness values obtained during subcritical steady crack growth.  相似文献   

2.
《Polymer Composites》2017,38(11):2501-2508
The effects of two thermoplastic micro‐veils, polyamide (PA) and polyethylene terephthalate (PET) veil, on the interlaminar fracture toughness of a glass fiber/vinyl ester (GF/VE) composite were investigated. The veils incorporated into the composite as interleaving materials were first characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), contact angle and tensile testing in order determine the best candidate as toughening agent for the GF/VE composite. Composite laminates were manufactured by vacuum‐assisted resin infusion process. Double cantilever beam (DCB) testing was performed to investigate the Mode I type interlaminar fracture toughness of the composites, which was characterized by critical strain energy release rate (G IC). An increased G IC was obtained by incorporating the PA veil, but it changed negligibly by the addition of the PET veil. The analysis of the composites fracture surface via SEM revealed increased fiber bridging between adjacent plies in the case of PA veil interleaved composites which played a key role in enhancing the Mode I interlaminar fracture toughness. However, the PET veil present in the interlaminar region did not take part in any energy absorbing mechanism during the delamination, thus keeping the G IC of the composite unaltered. POLYM. COMPOS., 38:2501–2508, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
The global mechanical properties of composite structures in service depend on fiber/matrix interface and interlaminar strength. The paper proposes to use Acoustic Emission (AE) and advanced signal processing to evaluate the interlaminar performance of polymeric composites. A delaminating process simulated with a Double Cantilever Beam (DCB) in opening mode (Mode I) coupled with an Acoustic Emission (AE) technique has been employed. Different samples were analyzed to observe the damage evolution and to evaluate the interlaminar decohesion processes. The resistance to delamination growth is expressed in terms of the interlaminar DCB mode (mode I) fracture toughness, measured by strain energy release rate, GI, dissipated per unit area of delamination growth in composite. Three categories of samples were used: two unidirectional carbon fiber/epoxy resins with one degraded by heat and one with a commercially used resin. It was found that sample that was exposed at a temperature greater than the glass transition temperature Tg of the epoxy had a higher cumulative energy release rate than the two other samples types. The original type having the lowest release rate. Acoustic emission parameters have been found to be powerful indicators of the intensity of the damage. Multivariate analysis of up to 49 parameters was performed in order to group classes of AE signals with matching characteristics. A correlation was established between the energy release rate and the acoustic emission energy.  相似文献   

4.
The combined effect of varying loading rate and test temperature on the mode II interlaminar fracture properties of AS4/carbon fiber reinforced PEEK has been investigated. End notch flexure tests have shown that this thermoplastic‐based composite system offers a very high value of interlaminar fracture toughness at room temperature. Increasing the test temperature leads to a reduction in the mode II interlaminar fracture toughness of the composite, with the value at 150°C being approximately one half of the room temperature value. In contrast, increasing the crosshead displacement rate has been shown to increase the value of GIIc by up to 25%. A more detailed understanding of the effect of varying temperature and loading rate on the failure mechanisms occurring at the crack tip of these interlaminar fracture specimens has been achieved using the double end notch flexure (DENF) geometry. Here, extensive plastic flow within the crack tip region was observed in all specimens. It is believed that the rate sensitivity of GIIc reflects the rate‐dependent characteristics of the thermoplastic resin.  相似文献   

5.
An experimental investigation has been carried out to study the influence of thermoplastic addition on the mechanical properties of woven carbon fiber/epoxy matrix composites. As toughening agent bisphenol‐A polysulfone, PSu, has been added to the epoxy matrix. Flexural tests haved been performed to characterize the mechanical behavior of unmodified and PSu‐modified bulk tetra‐ and bifunctional epoxy matrices and also for the corresponding woven carbon fiber, CF, composite materials. Three‐point notched flexural tests been used to investigate the influence of polysulfone addition in the mode‐I fracture properties of the bulk epoxy matrices, relating them to their microstructural features investigated by atomic force microscopy (AFM). The double‐cantilever bea (DCB) and the end‐notched flexural (ENF) tests have been applied to characterize the interlaminar fracture toughness of the corresponding composites. For composites, the flexural properties were simmilar independent of the funcetionality of the epoxy matrix and of the thermoplastic content. Nevertheless, PSu addition to the epoxy matrix celarly enhanced the ode‐I and II interlaminar fracture toughness of the corresponding composites, the immprovement being higher for the composites manufactured with the bifunctional epoxy matrix at every thermoplastic content because of the lower crosslink density of the epoxy matrix.  相似文献   

6.
Based on the continuum damage mechanics (CDM) and the cohesive zone model (CZM), a numerical analysis method for the evaluation of damage in composite laminates under low‐velocity impact is proposed. The intraply damage including matrix crack and fiber fracture is represented by the CDM which takes into account the progressive failure behavior in the ply, using the damage variable to describe the intraply damage state. The delamination is characterized by a special contact law including the CZM which takes into account the normal crack and the tangential slip. The effect of the interlaminar toughness on the impact damage is investigated, which is as yet seldom discussed in detail. The results reveal that as the interlaminar fracture toughness enhances, the delamination area and the dissipated energy caused by delamination decrease. The contribution of normal crack and tangential slip to delamination is evaluated numerically, and the later one is the dominant delamination type during the impact process. Meanwhile, the numerical prediction has a good agreement with the experimental results. The study is helpful for the optimal design and application of composite laminates, especially for the design of interlaminar toughness according to certain requirements. POLYM. COMPOS. 37:1085–1092, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Amorphous poly(ether imide) has been used as interlaminar toughening particulate agent in laminated carbon fiber/epoxy composites. Mode I and Mode II delamination fracture toughness was characterized using the double cantilever beam (DCB) and end-notched flexure (ENF) specimens. The delamination surface was examined using a scanning electron microscopy (SEM) to investigate relationships between the morphology and properties. The results revealed that the PEI-modified composites exhibited a significantly increased fracture toughness, which increased with the PEI content. GIC was improved from 165 to 540 J/m2 (at 1 mm/min crosshead speed). GIIC was improved more significantly from 290 to 1300 J/m2. It is believed that these values could be further improved if the processing cycle were to be optimized.  相似文献   

8.
The combined effect of varying loading rate and test temperature on the mode II Interlaminar fracture properties of a carbon fiber reinforced phenolic resin has been investigated. End notch flexure tests at room temperature have shown that this composite offers a relatively modest value of GIIcNL at non‐linearity and that its interlaminar fracture toughness decreases with increasing loading rate. As the test temperature is increased, the quasistatic value of GIIcNL increases steadily and the reduction in GIIcNL with loading rate becomes less dramatic. At temperatures approaching the glass transition temperature of the phenolic matrix, the interlaminar fracture toughness of the composite begins to increase sharply with crosshead displacement rate. A more detailed understanding of the effect of varying the test conditions on the failure mechanisms occurring at the crack tip of these interlaminar fracture specimens has been achieved using the double end notch flexure (DENF) geometry.  相似文献   

9.
Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of (1) adherend thickness and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16 or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.  相似文献   

10.
A comparative study is presented on the fracture toughness of carbon fiber/PEEK composites manufactured by autoclave and laser‐assisted automated tape placement (LATP). Formation of a good inter‐laminar bond is always a concern in ATP due to the short time available for intimate contact development and polymer healing, yet our double cantilever beam (DCB) tests reveal 60–80% higher Mode I fracture toughness for the LATP processed specimens than for the autoclave processed specimens. This magnitude of difference was unexpected, so specimens were further examined via differential scanning calorimetry, dynamic mechanical analysis, nano‐indentation, and scanning electron microscopy. The results indicate that the LATP process has been very effective in heating and consolidating the surface of plies, creating an excellent bond. However, it has been less effective in processing the interior of plies, where a low crystallinity and poor fiber–matrix bonding are evident. The higher fracture toughness of the LATP processed specimens is also not solely due to a better bond, but is partially due to significant plastic deformation in the interior of plies during the DCB test. The findings indicate there is still considerable scope for optimizing the laser‐assisted ATP process, before the optimum balance between strength and toughness is achieved at favorable lay‐down speeds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41643.  相似文献   

11.
This investigation is focused on the influence of glass fiber surface treatment on the interlaminar fracture toughness of unidrectional laminates. Three different fiber surface treatments were considered: polyethylene treated fibers to get poor adhesion, silance treated fibers to get good bond strength, and industrial fibers without special treatments with the coupling agents. The interlaminar fracture behavior of unidirectional glass fiber reinforced composites with different fiber surface treatments has been investigated in mode I, mode II, and for the fixed mixed mode I/II ratio 1.33. Double cantilever beam (DCB), end notched flexure (ENF), and mixed mode flexure (MMF) specimens were used. The data obtained from these tests were analyzed by using different analytical approaches and the finite element method. For the fibers treated with the silane coupling agent, a value about 2.5 times higher of mode II interlaminar fracture toughness for crack initiation was obtained in comparison with the polyethylene sized composite. For the composite made from the industrial fibers, a value about 2 times higher was obtained. Because of extensive fiber bridging and pullout in the composites with poor fiber/matrix adhesion, the results of mode I and mixed mode I/II tests did not characterize the interphase quality. In order to determine the interphase quality, the mode II tests are recommended.  相似文献   

12.
Graphene oxide (GO) nanoparticles were introduced in the interlaminar region of carbon fiber–epoxy composites by dispersing it in a thermoplastic polymer carrier such as polyvinylpyrrolidone (PVP). Mode‐I fracture toughness (GIC) was investigated using double cantilever beam testing to evaluate the effect of the GO on the delamination behavior of the composite. The GO content was varied from 0% to 7% by weight as a function of the PVP content. Improvement of ~100% in the Mode I fracture toughness (GIC) was observed compared to composites with no GO. The optimum amount of nanoparticles for improving the interlaminar fracture toughness was found to be ~0.007% by weight of the composite. The increase in the value of flexural strength value was also observed. Scanning electron microscopy of fracture surfaces, X‐ray diffraction, and transmission electron microscopy, and reflectance Fourier transform infrared spectra, as well as Raman spectroscopy results, are presented to support the conclusions. POLYM. ENG. SCI., 59:1199–1208 2019. © 2019 Society of Plastics Engineers  相似文献   

13.
The Mode I interlaminar fracture behavior of woven carbon fiber/epoxy composite laminates incorporating partially cured carbon nanotube/epoxy composite films has been investigated. Laminates with films containing carbon nanotubes (CNTs) in the as‐received state and functionalized with polyamidoamine were evaluated, as well as laminates with neat epoxy films. Double‐cantilever beam (DCB) specimens were used to measure GIc, the critical strain energy release rate (fracture toughness) versus crack length. Post‐fracture microscopic inspection of the fracture surfaces was performed. Results show that initial fracture toughness was improved with the amino‐functionalized CNT/epoxy interleaf films, but the important factor appears to be the polyamidoamine functionalization, not the CNTs. The initial fracture toughness remained relatively unaffected with the incorporation of neat epoxy and as‐received CNT/epoxy interleaf films. Plateau fracture toughness was unchanged with the use of functionalized CNT/epoxy interleaf films, and was reduced with the use of neat epoxy and as‐received CNT/epoxy interleaf films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The effect of fiber content on the fracture toughness of short glass fiber reinforced and rubber toughened nylon‐6 has been investigated using the essential work of fracture (EWF) analysis under both quasi‐static and impact rates of loading. Under quasi‐static loading rate, matrix plastic deformation played a major role. Addition of 10 wt% of short glass fibers into a rubber toughened nylon‐6 matrix improved the fracture toughness substantially. This is due to the synergistic effect that comes from matrix yielding and fiber related energy absorption such as fiber debonding, fiber pull‐out and fiber fracture. With further increasing the glass fiber content, up to 20 and 30 wt%, even though plastic deformation could still take place on the fracture surfaces, the depth of the fracture process zones was much smaller when compared with the system with 10 wt% of glass fibers. The reduction in fracture process zone caused the reduction in fracture toughness. Under impact loading rate, the unreinforced blend still fractured in a ductile manner with gross yielding in the inner fracture process zone and the outer plastic zone. The unrein‐forced blend therefore possesseed higher fracture toughness. For the fiber reinforced blends, the matrix fractured in brittle manner and so fracture toughness of the reinforced blends decreased dramatically. The impact fracture toughness increased slightly after incorporation of a higher weight percentage of glass fibers.  相似文献   

15.
《Polymer Composites》2017,38(2):217-226
Carbon fiber‐reinforced polymer (CFRP) composites were fabricated using ordinary and compaction setups (OS and CS, respectively) in the vacuum‐assisted resin‐transfer molding (VARTM) process. The mechanical properties and acoustic emission (AE) spectra of the CFRP composites were compared among fabricated samples. The CFRP plates with sequences of [+30/−30]6 were sectioned to make specimens for Mode I interlaminar fracture tests and three‐point bending tests. The difference between the material properties and AE characteristics of the OS and CS specimens were statistically compared using one‐way analysis of variance. The OS specimens had a thicker resin layer, a higher resin fraction, larger average fracture toughness, and AE energy corresponding to the Mode I fracture, whereas the CS specimens had more macro‐scale voids and higher bending strength. AE analysis showed that frequency bands in the interlaminar fracture tests corresponding to matrix‐related fracture were dominant for the OS specimens, whereas those corresponding to the mixed fracture mode of the fiber and matrix fracture were dominant for the CS specimens. In the bending tests, mixed fiber‐matrix fractures were dominant for the OS specimens, and fiber‐related fractures were dominant for the CS specimens. In conclusion, the compaction treatment diminished interlaminar fracture toughness, due to the enhanced formation of macro‐scale voids around the fiber bundles during the resin impregnation stage. However, the bending strength improved with an increased fiber volume fraction. POLYM. COMPOS., 38:217–226, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
Oxide/oxide composites reinforced by two-dimensional fiber fabrics are important structural materials at high temperatures but exhibit low delamination resistance. This study developed a simple slurry infiltration and sintering (SIS) process to fabricate three-dimensional oxide/oxide composites. The results showed that a homogeneous microstructure in three directions was obtained. This composite possessed a weak matrix, which had a porous structure and low elastic modulus. Typical mechanical properties of the composite were not lower than those of two-dimensional oxide/oxide composites since the flexural strength and fracture toughness were 332.4 MPa and 11.6 MPa·m1/2, respectively. Particularly, the composite had a good interlaminar shear strength of 25.4 MPa and a superior transthickness tensile strength of 5.6 MPa. X-ray computed tomography showed that fiber yarns in the through-thickness direction effectively impeded crack propagation and enhanced delamination resistance. Therefore, the reported SIS process is a very promising method for manufacturing three-dimensional oxide/oxide composites.  相似文献   

17.
The effect of fiber orientations on fracture toughness of carbon fiber reinforced plastics (CFRP) in Mode I loading was investigated using double cantilever beam (DCB) specimens, based on mesoscopic mechanics. Mesoscopic interlaminar fracture toughness of 0//0 interphase of CFRP was evaluated with mesoscopic finite element models using experimental data. The fracture surface roughness was observed by confocal laser scanning microscopy. Then the mesoscopic interlaminar fracture toughness of CFRP was correlated with the fracture surface roughness. Additionally, the change of the Mode I macroscopic fracture toughness of CFRP was experimentally measured with changing the numbers of 0 and ±θ layers of DCB specimens. The correlation between the fracture toughness of 0//0 and θ//?θ interphases was discussed and a novel procedure was proposed to predict the macroscopic fracture toughness of θ//?θ interphase using finite element method (FEM). The fracture toughness of θ//?θ interphase analyzed by FEM was finally compared with the experimental results to verify the proposed prediction procedure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Carbon fiber reinforced polymer composites are attractive because of their high stiffness and strength‐to‐weight ratios. In order to fully utilize the stiffness and strength of the reinforcement fiber, it is necessary to bring the polymer matrix and the reinforcement fiber together with homogeneous wetting. In this paper, a solution processing technique and the mechanical properties of carbon fiber reinforced polyethersulfone composites were investigated. The polymer was dissolved in cyclopentanone and fed onto a continuous carbon fiber tow using a drum winder. The solution‐processed composite prepregs were then layed up and compression molded into unidirectional composite panels for evaluation. The composite samples showed uniform fiber distribution and reasonably good wetting. The longitudinal flexural modulus was as high as 137 GPa, and longitudinal flexural strength 1400 MPa. In addition, the effects of polymer grade and processing conditions on the mechanical properties of the composites were discussed. It is suggested that the transverse properties and interlaminar fracture toughness could benefit from higher polymer matrix molecular weight. A careful design in the spatial distribution of the molecular weight would be necessary for practical applications.  相似文献   

19.
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form GIC= A · Δ ab (where GIC is mode I interlaminar fracture toughness and Δ a is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness. GICini, can be defined as the GIC value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.  相似文献   

20.
Delamination mechanisms in continuous fiber reinforced composites were investigated. The concept of controlled interlaminar bonding (CIB) is proposed as a guideline for preparing fiber-epoxy composite laminates with enhanced fracture toughness without significant degradation in strength properties. The interlaminar bonding was manipulated by several specialized techniques including insertion of delamination promotors and surface modification of laminae. Results indicated that the plane-strain fracture toughness of E-glass-epoxy laminates could be improved by inserting perforated interlaminar films of aluminum, paper, polyester and polyimide, and fabrics. Such interlayers were used to promote delamination which dissipate strain energy by blunting and diverting a propagating crack. The fracture resistance of a laminate was found to be dependent on the degree of delamination. The competition between the growth of delamination cracks and the propagation of a main crack is controlled by the relative magnitude of the interlaminar bonding strength and the lamina cohesive strength. The interlaminar bonding is controlled by the degree of interlayer perforation and the adhesion between interlayer and lamina. The loading direction was found to be very important in dictating the failure processes. Experimental results from several composite systems are presented and discussed along with post-failure analysis data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号