首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch studies were conducted to examine the adsorption kinetics and adsorption capacity of iron oxide-coated biomass (IOCB) for As(III) and As(V). The optimum pH for As(V) and As(III) removal was found to be 6. The equilibrium time for removal of arsenic was found to be approximately 7 h. The adsorption of As(V) on IOCB was rapid compared to that of As(III) adsorption. An increase in temperature (from 5 to 30 °C) was found to increase As(III) removal, whereas in the case of As(V), the removal increased with temperature from 5 to 10 °C, but remained relatively constant thereafter up to 30 °C. The pseudo-second order rate equation was found to describe better the kinetics of arsenic adsorption than other equations. The isotherm data for As(V) removal fitted better with the Langmuir equation compared with other tested models and the isotherm data for As(III) removal fitted better with Redlich–Peterson equation than other tested models. Iron oxide-coated fungal biomass (A. niger) was found to be efficient in removing arsenic from an aqueous solution.  相似文献   

2.
Removal of arsenic from water by zero-valent iron   总被引:8,自引:0,他引:8  
Batch and column experiments were conducted to investigate the effect of dissolved oxygen (DO) and pH on arsenic removal with zero-valent iron [Fe(0)]. Arsenic removal was dramatically affected by the DO content and the pH of the solution. Under oxic conditions, arsenate [As(V)] removal by Fe(0) filings was faster than arsenite [As(III)]. Greater than 99.8% of the As(V) was removed whereas 82.6% of the As(III) was removed at pH 6 after 9h of mixing. When the solution was purged with nitrogen gas to remove DO, less than 10% of the As(III) and As(V) was removed. High DO content and low solution pH also increased the rate of iron corrosion. The removal of arsenic by Fe(0) was attributed to adsorption by iron hydroxides generated from the oxic corrosion of Fe(0). The column results indicated that a filtration system consisting of an iron column and a sand filter could be used for treatment of arsenic in drinking water.  相似文献   

3.
A novel method for the removal of inorganic arsenic(III) (As(III)), monomethylarsonate (MMA), and dimethylarsinate (DMA) from aqueous media, was proposed and investigated. This method involves the combined use of TiO2-photocatalyst and an adsorbent, which has a high ability of As(V) adsorption, under photo-irradiation. When an aqueous solution of As(III) was stirred and irradiated by sunlight or xenon lamp in the presence of TiO2 suspension, the oxidation of As(III) into As(V) was effectively attained. By use of the same photocatalytic reaction, MMA and DMA were also degraded into As(V), while the total organic carbon (TOC) in the aqueous phase was decreased. When an aqueous solution of As(III) was stirred with a mixed suspension of TiO2 and an adsorbent for As(V) (activated alumina) under sunlight irradiation, the arsenic removal reached 89% after 24 h. By use of the same photocatalyst–adsorbent system, 98% of MMA and 97% of DMA were removed. The mechanism of the removal of arsenic species by the photocatalyst–adsorbent system was discussed.  相似文献   

4.
Removal of As(V) and As(III) by reclaimed iron-oxide coated sands   总被引:1,自引:1,他引:0  
This paper aims at the feasibility of arsenate and arsenite removal by reclaimed iron-oxide coated sands (IOCS). Batch experiments were performed to examine the adsorption isotherm and removal performance of arsenic systems by using the IOCS. The results show that the pH(zpc) of IOCS was about 7.0 +/- 0.4, favoring the adsorption of As(V) of anion form onto the IOCS surface. As the adsorbent dosage and initial arsenic concentration were fixed, both the As(V) and As(III) removals decrease with increasing initial solution pH. Under the same initial solution pH and adsorbent dosage, the removal efficiencies of total arsenic (As(V) and As(III)) were in the order as follows: As(V)>As(V)+As(III)>As(III). Moreover, adsorption isotherms of As(V) and As(III) fit the Langmuir model satisfactorily for the four different initial pH conditions as well as for the studied range of initial arsenic concentrations. It is concluded that the reclaimed IOCS can be considered as a feasible and economical adsorbent for arsenic removal.  相似文献   

5.
This paper presents the observations of the study on arsenic removal from a contaminated ground water (simulated) by adsorption onto Fe3+ impregnated granular activated carbon (GAC-Fe). Fe2+, Fe3+ and Mn2+ have also been considered along with arsenic species in the water sample. Similar study has also been done with untreated granular activated carbon (GAC) for comparison. The effects of adsorbent dose, particle size of adsorbent and initial arsenic concentration on the removal of As(T), As(III), As(V), Fe2+, Fe3+ and Mn2+ have been discussed. Under the experimental conditions, the optimum adsorbent doses for GAC-Fe and GAC have been found to be 8 g/l and 24 g/l, respectively with an agitation time of 15 h. Particle size of the adsorbents (both GAC and GAC-Fe) has shown negligible effect on the removal of arsenic and Fe species. However, for Mn removal the effect of adsorbent particle size is comparatively more. Percentage removal of As(T), As(V) and As(III) increase with the decrease in initial arsenic concentration (As0). However, the increase in percentage removal of all the arsenic species with decrease in As0 are less for higher value of As0 (3000–500 ppb) than those of the lower value of As0 (500–10 ppb). The % removal of As(T), As(III), As(V), Fe, and Mn were 95%, 92.4%, 97.6%, 99% and 41.2%, respectively when 8 g/l GAC-Fe was used at the As0 value of 200 ppb. However, for GAC these values were 55.5%, 44%, 71%, 98% and 97%. The pH and temperature of the study were 7 ± 0.1 and 30 ± 1 °C, respectively.  相似文献   

6.
The present paper describes the observations on the treatment of arsenic contaminated synthetic industrial effluent in a bio-column reactor. Ralstonia eutropha MTCC 2487 has been immobilized on the granular activated carbon (GAC) bed in the column reactor. The synthetic water sample containing As(T) (As(III):As(V)=1:1), Fe, Mn, Cu and Zn at the initial concentrations of 25, 10, 2, 5, 10 ppm, respectively, was used. Concentrations of all the elements have been found to be reduced below their permissible limits in the treated water. The significant effect of empty bed contact time (EBCT) and bed height on the arsenic removal was observed in the initial stage. However, after some time of operation (approximately 3-4 days) no such effect was observed. Removal of As(III) and As(V) was almost similar after approximately 2 days of operation. However, at the initial stage As(V) removal was slightly more than that of As(III). In absence of washing, after approximately 4-5 days of operation, the bio-column reactor was observed to act as a GAC column reactor based on physico-chemical adsorption. Like arsenic, the percent removals of Fe, Mn, Cu and Zn also attained minimum after approximately 1 day and increased significantly to the optimum value within 3-4 days of operation. Dissolved oxygen (DO) has been found to decrease along with the increasing bed height from the bottom. The pH of the solution in the reactor has increased slightly and oxidation-reduction potential (ORP) has decreased with the time of operation.  相似文献   

7.
The speciation of aqueous and adsorbed As forms of arsenic (As) is a major environmental concern in the presence of humic acid (HA). The speciation during As adsorption process by the effect of contact order were evaluated in various equilibrated ternary systems consisting of As, HA and hematite. One ternary system was composed of the preequilibrated As(III)- or As(V)-HA complex, with the subsequent addition of hematite ((As-HA)-hematite system), and the other consisted of the preequilibrated HA-hematite, with the addition of As(III) or As(V) (As-(HA-hematite) system). The presence of HA led to a decrease in the As adsorption, opposite to cationic adsorption. The order of the amounts of As adsorption were found to follow as: As(V)-hematite>hematite-(As(V)-HA)>As(V)-(HA-hematite)>As(III)-hematite>hematite-(As(III)-HA)>As(III)-(HA-hematite). Free As(V) and As-HA complex were preferentially adsorbed onto the hematite surface. The immobilization of As can come from adsorbed HA on mineral surfaces, and formation of As-HA complex, following their slow kinetics.  相似文献   

8.
9.
Arsenic removal from real-life groundwater by adsorption on laterite soil   总被引:1,自引:0,他引:1  
The adsorption characteristics of arsenic on laterite soil, a low-cost natural adsorbent, were studied in the laboratory scale using real-life sample. The studies were conducted by both batch and continuous mode. Laterite soil was found to be an efficient adsorbent for arsenic removal from the groundwater collected from arsenic affected area. The initial concentration of arsenic in the sample was 0.33 ppm. Under optimized conditions the laterite soil could remove up to 98% of total arsenic. The optimum adsorbent dose was 20 g/l and the equilibrium time was 30 min. Isotherm studies showed that the process is favorable and spontaneous. The kinetics showed that the removal of arsenic by laterite soil is a pseudo-second-order reaction. In the column study the flow rate was maintained at 1.49 m3/(m2 h). Using 10 cm column depth, the breakthrough and exhaust time found were 6.75 h and 19.0 h, respectively. Height of adsorption zone was 9.85 cm, the rate at which the adsorption zone was moving through the bed was 0.80 cm/h, and the percentage of the total column saturated at breakthrough was 47.12%. The value of adsorption rate coefficient (K) and the adsorption capacity coefficient (N) were 1.21 l/(mgh) and 69.22 mg/l, respectively. Aqueous NaOH (1 M) could regenerate the adsorbent, and the regenerated adsorbent showed higher efficiency.  相似文献   

10.
Orange waste, produced during juicing has been loaded with zirconium(IV) so as to examine its adsorption behavior for both As(V) and As(III) from an aquatic environment. Immobilization of zirconium onto the orange waste creates a very good adsorbent for arsenic. Adsorption kinetics of As(V) at different concentrations are well described in terms of pseudo-second-order rate equation with respect to adsorption capacity and correlation coefficients. Arsenate was strongly adsorbed in the pH range from 2 to 6, while arsenite was strongly adsorbed between pH 9 and 10. Moreover, equimolar (0.27 mM) addition of other anionic species such as chloride, carbonate, and sulfate had no influence on the adsorption of arsenate and arsenite. The maximum adsorption capacity of the Zr(IV)-loaded SOW gel was evaluated as 88 mg/g and 130 mg/g for As(V) and As(III), respectively. Column adsorption tests suggested that complete removal of arsenic was achievable at up to 120 Bed Volumes (BV) for As(V) and 8 0BV for As(III). Elution of both arsenate and arsenite was accomplished using 1 M NaOH without any leakage of the loaded zirconium. Thus this efficient and abundant bio-waste could be successfully employed for the remediation of an aquatic environment polluted with arsenic.  相似文献   

11.
The demand for effective and inexpensive adsorbents is to increase in response to the widespread recognition of the deleterious health effects of arsenic exposure through drinking water. A novel adsorbent, aluminum-loaded Shirasu-zeolite P1 (Al-SZP1), was prepared and employed for the adsorption and removal of arsenic(V) (As(V)) ion from aqueous system. The process of adsorption follows first-order kinetics and the adsorption behavior is fitted with a Freundlich isotherm. The adsorption of As(V) is slightly dependent on the initial pH over a wide range (3-10). Al-SZP1 was found with a high As(V) adsorption ability, equivalent to that of activated alumina, and seems to be especially suitable for removal of As(V) in low concentration. The addition of arsenite, chloride, nitrate, sulfate, chromate, and acetate ions hardly affected the As(V) adsorption, whereas the coexisting phosphate greatly interfered with the adsorption. The adsorption mechanism is supposed as a ligand-exchange process between As(V) ions and the hydroxide groups present on the surface of Al-SZP1. The adsorbed As(V) ions were desorbed effectively by a 40 mM NaOH solution. Continuous operation was demonstrated in a column packed with Al-SZP1. The feasibility of this technique to practical utilization was also assessed by adsorption/desorption multiple cycles with in situ desorption/regeneration operation.  相似文献   

12.
Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III) and As(V). Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4) nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III) and As(V). The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III) and As(V) increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.  相似文献   

13.
Chen D  Huang C  He M  Hu B 《Journal of hazardous materials》2009,164(2-3):1146-1151
A simple and sensitive method using micro-column packed with 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) modified ordered mesoporous silica combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for the speciation of inorganic arsenic (As(III) and As(V)) has been developed. The adsorption behaviors of As(III) and As(V) on AAPTS modified ordered mesoporous silica were investigated. It was found that As(V) can be selectively adsorbed on the micro-column within pH of 3-9, while As(III) could not be retained in the studied pH range and passed through the micro-column directly. Total inorganic arsenic was extracted after the oxidation of As(III) to As(V) with 50.0 micromol L(-1) KMnO(4). The assay of As(III) was based on subtracting As(V) from total As. The effect of various parameters on the separation/preconcentration of As(III) and As(V) have been investigated and the optimal experimental conditions were established. The adsorption capacity of AAPTS modified ordered mesoporous silica for As(V) was found to be 10.3 mg g(-1). The detection limit of the method for As(V) was 0.05 microg L(-1) with an enrichment factor of 100, and the relative standard deviation (R.S.D.) was 5.7% (n=7, C=1.0 microg L(-1)). In order to validate the developed method, a certified reference material GSBZ50004-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the speciation analysis of inorganic arsenic in natural water samples.  相似文献   

14.
In this study, divalent manganese ions [Mn(II)] were substituted a part of divalent iron ions [Fe(II)] present in Fe oxyhydroxides to prepare novel composites (Mn@Feox). The composites were prepared by (1) simultaneous hydrolysis of Fe(II) and Mn(II), and (2) rapid oxidation with H2O2. The resulting Mn@Feox prepared with different molar ratios of Fe and Mn was characterized and evaluated for their abilities to adsorb arsenic species [As(III) and As(V)] in aqueous solution. X-ray diffraction and field emission transmission electron microscope analyses revealed Mn@Feox has a δ-(Fe1?x, Mnx)OOH-like structure with their mineralogical properties resembling those of feroxyhyte (δ-FeOOH). The increase in Mn substitution in Mn@Feox enhanced the oxidative ability to oxidize As(III) to As(V), but it decreased the adsorption capacity for both arsenic species. The optimal Mn/Fe molar ratio that could endow oxidation and magnetic capabilities to the composite without significantly compromising As adsorption capability was determined to be 0.1 (0.1Mn@Feox). The adsorption of As(III) on 0.1Mn@Feox was weakly influenced by pH change while As(V) adsorption showed high dependence on pH, achieving nearly complete removal at pH?<?5.7 but gradual decrease at pH?>?5.7. The adsorption kinetics and isotherms of As(III) and As(V) showed good conformity to pseudo-second-order kinetics model and Freundlich model, respectively.  相似文献   

15.
Yan XP  Yin XB  He XW  Jiang Y 《Analytical chemistry》2002,74(9):2162-2166
A flow injection on-line sorption preconcentration and separation in a knotted reactor (KR) was coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) for speciation of inorganic arsenic in natural water samples. The method involved on-line formation of the As(III)-pyrrolidinedithiocarbamate (PDC) complex over a sample acidity of 0.001-0.1 mol L(-1) HCl, its adsorption onto the inner walls of the KR made from 150-cm long x 0.5-mm i.d. PTFE tubing, elution withmol L(-1) HCl, and detection by HG-AFS. Total inorganic arsenic was determined after prereduction of As(V) to As(III) with 1% m/v L-cysteine. The concentration of As(V) was calculated by the difference of the total inorganic arsenic and As(III). A 1 mol L(-1) concentration of HCl was employed not only as the efficient eluent but also as the required medium for subsequent hydride generation. Potential factors that affect adsorption, rinsing, elution, and hydride generation were investigated in detail. The low cost, easy operation, and high sensitivity are the obvious advantages of the present system. With consumption of a 6 mL sample solution, an enhancement factor of 11 and a detection limit (3s) of 0.023 microg L(-1) As(III) were obtained at a sample throughput of 32 h(-1). The precision for 14 replicate measurements of 1 microg L(-1) As(III) was 1.3% (RSD). The recoveries from natural water samples varied from 96.7 to 105% for 2 microg L(-1) of As(III) spike and from 97.1 to 107% for 2 microg L(-1) of As(V) spike. The analytical results obtained by the present method for total arsenic in the certified reference materials, SLRS-4 (river water) and NASS-5 (seawater), agreed well with the certified values. The developed method was also successfully applied to the speciation of inorganic arsenic in local natural water samples.  相似文献   

16.
Ultrafine iron oxide (α-Fe2O3) nanoparticles were synthesized by a solvent thermal process and used to remove arsenic ions from both lab-prepared and natural water samples. The α-Fe2O3 nanoparticles assumed a near-sphere shape with an average size of about 5 nm. They aggregated into a highly porous structure with a high specific surface area of ∼162 m2/g, while their surface was covered by high-affinity hydroxyl groups. The arsenic adsorption experiment results demonstrated that they were effective, especially at low equilibrium arsenic concentrations, in removing both As(III) and As(V) from lab-prepared and natural water samples. Near the neutral pH, the adsorption capacities of the α-Fe2O3 nanoparticles on As(III) and As(V) from lab-prepared samples were found to be no less than 95 mg/g and 47 mg/g, respectively. In the presence of most competing ions, these α-Fe2O3 nanoparticles maintained their arsenic adsorption capacity even at very high competing anion concentrations. Without the pre-oxidation and/or the pH adjustment, these α-Fe2O3 nanoparticles effectively removed both As(III) and As(V) from a contaminated natural lake water sample to meet the USEPA drinking water standard for arsenic.  相似文献   

17.
以硝酸铝和尿素为原料, 通过简单的水热和高温煅烧法自组装形成三维层级花状活性氧化铝。这种结构既保留了氧化铝丰富的纳米级别活性位点, 同时具有微米级的三维尺寸, 在柱吸附除砷实验中起到骨架支撑作用, 而其较大的比表面积可以确保水中的砷酸根离子与吸附位点充分接触, 从而有效吸附水中砷酸根离子, 相较商用活性氧化铝具有更好的除砷性能, 且不会对水体产生二次污染。对制备的活性氧化铝材料的除砷动力学进行了分析, 明确了吸附动力学准一级和准二级模型的应用条件和范围。通过对该材料吸附砷酸根前后Zeta电位的变化的研究和离子强度实验进一步验证发现, γ-Al2O3对As(V)的吸附机理遵循内球配位模型, 而对As(III)的吸附机理遵循外球配位模型。  相似文献   

18.
The present work provides a method for removal of the arsenic (III) from water. An ion-exchanger hybrid material zirconium (IV) oxide-ethanolamine (ZrO-EA) is synthesized and characterized which is subsequently used for the removal of selective arsenic (III) from water containing 10,50,100 mg/L of arsenic (III) solution. The probable practical application for arsenic removal from water by this material has also been studied. The various parameters affecting the removal process like initial concentration of As (III), adsorbent dose, contact time, temperature, ionic strength, and pH are investigated. From the data of results, it is indicated that, the adsorbent dose of 0.7 mg/L, contact time 50 min after which the adsorption process comes to equilibrium, temperature (25 ± 2), solution pH (5-7), which are the optimum conditions for adsorption. The typical adsorption isotherms are calculated to know the suitability of the process. The column studies showed 98% recovery of arsenic from water especially at low concentration of arsenic in water samples.  相似文献   

19.
Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Qe = 11.98 mg/g, for initial dye solution concentration 3.5 × 10−5 mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found −6411 J/mol, −30360 J/mol and −76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures.  相似文献   

20.
Arsenite is acute contaminant to human health in soil and water environment. In this study, Pyrolusite (α-MnO2) was used to investigate the oxidative transformation of arsenite into arsenate with batch experiments under different reaction conditions. The results showed that arsenite transformation occurred and was accompanied by the adsorption and fixation of both As(III) and As(V) on α-MnO2. About 90% of sodium arsenite (10 mg/L) were transformed by α-MnO2 under the conditions of 25 °C and pH 6.0, 36.6% of which was adsorbed and 28.9% fixed by α-MnO2. Increased α-MnO2 dosages promoted As (III) transformation rate and adsorption of arsenic species. The transformation rate and adsorption of arsenic species raised with increasing pH values of reaction solution from 4.7 to 8.0. The oxidation rate decreased and adsorbed As(III) and As(V) increased with increasing initial arsenite concentration. The enhancement on oxidative transformation of sodium arsenite may result from abundant active sites of α-MnO2. Along with adsorption and fixation of arsenic species during the reaction, the crystal structure of α-MnO2 did not change, but the surface turned petty and loosen. Our results demonstrated that α-MnO2 has important potential in arsenic transformation and removal as the environmentally friendly natural oxidant in soil and surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号