首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 247 毫秒
1.
采用一体化严重事故分析工具,对600MWe压水堆核电厂严重事故下氢气风险及拟定的氢气控制系统进行分析。结果表明:相对于小破口失水始发事故和全厂断电始发事故工况,大破口失水始发严重事故堆芯快速熔化,在考虑100%锆 水反应产氢量的条件下,大破口失水始发事故氢气风险较大,有可能发生氢气快速燃烧;在氢气控制系统作用下,发生大破口失水始发严重事故时,安全壳内平均氢气浓度和隔间内氢气浓度低于10%,未达到氢气快速燃烧和爆炸的条件,满足美国联邦法规10CFR中关于氢气控制和风险分析的准则,认为该氢气控制系统是可行、有效的。  相似文献   

2.
本文采用集总参数法,在先进非能动压水堆核电厂严重事故一体化分析模型基础上,考虑先进压水堆非能动安全特性以及严重事故下采取熔融物堆内滞留(IVR)措施等特性对氢气风险的影响,开展了典型严重事故下安全壳内氢气风险分析。分别选取了冷段双端剪切断裂大破口、冷段大破口叠加IRWST重力注水有效以及ADS-4误启动三个典型大破口失水事故序列,对事故进程中的氧化温度、产氢速率以及产氢质量等特性进行了研究。选取产氢量最大的冷段大破口叠加IRWST重力注水有效事故序列,分析了氢气点火器系统的消氢效果。结果表明,堆芯再淹没过程产生大量氢气,采用点火器可有效去除安全壳内的氢气,从而降低氢气燃爆风险。  相似文献   

3.
采用模块化严重事故计算工具,对秦山二期核电厂大破口失水事故(LB-LOCA)、小破口失水事故(LB-LOCA)和全厂断电(SBO)诱发的严重事故序列以及安全壳内的氢气浓度分布进行了计算分析.在此基础之上,参考美国联邦法规10CFR关于氢气控制和风险分析的标准,对安全壳的氢气燃烧风险进行了初步研究.分析结果表明:大破口严重事故导致的安全壳内的平均氢气浓度接近10%,具有一定的整体性氢气燃烧风险,小破口失水和全厂断电严重事故可能不会导致此类风险,但仍然存在局部氢气燃烧的可能.  相似文献   

4.
在严重事故条件下,安全壳内的氢气燃烧或爆炸威胁安全壳完整性,必须采取措施减小或消除安全壳的氢气风险。针对600MWe级核电厂的大型干式安全壳,以小破口失水诱发的严重事故序列为基准事故,计算分析了氢气催化复合器(PAR)消除安全壳内氢气的效果,及复合效应对安全壳压力温度的影响。研究表明:氢气催化复合器能够持续稳定地消除安全壳内氢气,但对于极其快速的氢气释放,它的消氢能力受到一定限制。  相似文献   

5.
采用一体化严重事故仿真程序,对600MW核电厂严重事故下氢气控制系统进行功能分析及优化设计,并提出工程上可实施的氢气控制系统优化准则。结果表明:该氢气控制系统能确保大破口失水始发严重事故下安全壳内平均氢气浓度和隔间内氢气浓度低于10%,满足美国联邦法规10CFR中关于氢气控制和风险分析的准则;改变非能动氢气复合器的布置方案,在有效缓解氢气风险的前提下,尽量降低复合器数量,优化结果为优化方案2优于优化方案1,优化方案1优于原拟定方案。  相似文献   

6.
SB-LOCA始发严重事故下压力容器内氢气源项分析   总被引:1,自引:0,他引:1  
针对大亚湾核电站900 MW压水堆,采用一体化严重事故分析工具,对小破口冷却剂丧失(SB-LOCA)始发严重事故进行模拟,分析了不同破口尺寸和破口位置对事故进程及压力容器内氢气产生量的影响.结果表明,压力容器内氢气的大量产生集中在堆芯开始熔化阶段;压力容器内氢气产生量与破口尺寸有关,但没有明显规律,且分布较为集中,氢气平均产生量约为500kg;破口位置对氢气的产生影响较小.  相似文献   

7.
针对百万千瓦级压水堆核电厂大型干式安全壳在严重事故情况下的氢气风险控制,建立了一体化事故分析模型,分别对大破口失水事故(LB-LOCA)、中破口失水事故(MB-LOCA)、小破口失水事故(SB-LOCA)、全厂断电事故(SBO)、蒸汽发生器(SG)传热管破裂事故(SGTR)以及主蒸汽管道破裂事故(MSLB)进行事故进程计算以及氢气源项分析。相对于其他事故序列,LB-LOCA下堆芯快速熔化,锆-水反应产生氢气的速率快,可以作为安全壳内氢气风险控制有效性分析的代表性事故序列。分析表明,严重事故情况下在安全壳中安装一定数量的非能动氢气复合器(PARs)能够有效去除安全壳中的氢气,消除氢气燃烧或爆炸的风险,保持安全壳的完整性。  相似文献   

8.
严重事故下核电站安全壳内氢气分布及控制分析   总被引:2,自引:1,他引:2  
使用安全壳分析程序CONTAIN计算分析了百万千瓦级压水堆核电站严重事故下安全壳内的氢气浓度分布.分别对一回路冷段大破口失水(LB-LOCA)叠加应急堆芯冷却系统(ECCS)失效(不包括非能动的安注箱)事故和全厂断电(SBO)叠加汽轮机驱动的应急给水泵失效事故两个严重事故序列进行了计算.计算结果表明,不同严重事故下,安全壳各隔间对氢气控制系统的要求不同.氢气控制系统的设计必须满足不同事故下的法规要求,提高电站的安全性.  相似文献   

9.
目前的氢气风险分析中,主要采用一体化严重事故分析程序进行分析计算。日本福岛事故后,对氢气风险分析提出了更高的要求。为了实现对集总参数程序的有益补充,本文开展了GOTHIC程序氢气风险三维分析的研究。利用GOTHIC建立了局部氢气风险三维分析模型,在模型验证的基础之上,对典型严重事故序列下的氢气风险进行三维分析研究。研究表明:安全壳上部空间气流混合较好,氢气分层并不是非常明显;对于核电厂压力容器直接注射(DVI)管道破口所在的非能动堆芯冷却系统隔间B(PXS-B),由于破口以下部分区域被水淹没,破口以上区域的氢气浓度较高,但氢气风险较小。  相似文献   

10.
《核安全》2017,(4)
福岛事故后的核电厂安全审评过程中,国家核安全局对于严重事故下的氢气安全问题提出了更高的要求,从满足当前高标准的氢气安全要求的角度出发,有必要对安全壳内氢气行为开展更为细致深入的研究,开展氢气的三维分析,为集总参数程序的分析结果提供有益补充。本文采用一体化严重事故分析程序和流体力学程序对国产先进压水堆核电厂进行系统建模,选取大破口触发的严重事故序列,对严重事故工况下的氢气行为及氢气控制系统性能进行分析评价。首先采用一体化严重事故分析程序计算氢气产生源项、氢气产生速率和安全壳内氢气浓度分布等,评价安全壳隔间内的氢气风险。并采用计算流体力学程序,进一步对安全壳内重要隔间的氢气分布进行三维分析,研究安全壳内氢气和水蒸汽的行为,获得重要隔间内的流场、温度场、压力场、氢气分布及浓度变化等计算结果。CFD程序在计算气体分布方面要比集总参数程序更加精确和详细,通过更精细地模拟安全壳内的氢气行为,可以为集总参数程序的计算结果提供补充,为氢气控制系统的设计优化和严重事故氢气风险管理等提供有力的支持。  相似文献   

11.
Hydrogen source term and hydrogen mitigation under severe accidents is evaluated for most nuclear power plants (NPPs) after Fukushima Daiichi accident. Two units of Pressurized Heavy Water Reactor (PHWR) are under operating in China, and hydrogen risk control should be evaluated in detail for the existing design. The distinguish feature of PHWR, compared with PWR, is the horizontal reactor core surrounded by moderator in calandria vessel (CV), which may influence the hydrogen source term. Based on integral system analysis code of PHWR, the plant model including primary heat transfer system (PHTS), calandria, end shield system, reactor cavity and containment has been developed. Two severe accident sequences have been selected to study hydrogen generation characteristic and the effectiveness of hydrogen mitigation with igniters. The one is Station Blackout (SBO) which represents high-pressure core melt accident, and the other is Large Break Loss of Coolant Accident (LLOCA) at reactor outlet header (ROH) which represents low-pressure core melt accident. Results show that under severe accident sequences, core oxidation of zirconium–steam reaction will produce hydrogen with deterioration of core cooling and the water in CV and reactor cavity can inhibits hydrogen generation for a relatively long time. However, as the water dries out, creep failure happens on CV. As a result, molten core falls into cavity and molten core concrete interaction (MCCI) occurs, releasing a large mass of hydrogen. When hydrogen igniters fail, volume fraction of hydrogen in the containment is more than 15% while equivalent amount of hydrogen generate from a 100% fuel clad-coolant reaction. As a result, hydrogen risk lies in the deflagration–detonation transition area. When igniters start at the beginning of large hydrogen generation, hydrogen mixtures ignite at low concentration in the compartments and the combustion mode locates at the edge of flammable area. However, the power supply to igniters should be ensured.  相似文献   

12.
The hydrogen deflagration is one of the major risk contributors to threaten the integrity of the containment in a nuclear power plant, and hydrogen control in the case of severe accidents is required by nuclear regulations. Based on the large dry containment model developed with the integral severe-accident analysis tool, a small-break loss-of-coolant-accident (LOCA) without HPI, LPI, AFW and containment sprays, leading to the core degradation and large hydrogen generation, is calculated. Hydrogen and steam distribution in containment compartments is investigated. The analysis results show that significant hydrogen deflagration risk exits in the reactor coolant pump (RCP) compartment and the cavity during the early period, if no actions are taken to mitigate the effects of hydrogen accumulation.  相似文献   

13.
文章首先阐述了核电厂严重事故情况下安全壳内的氢气风险,研究现状,以及缓解、控制氢气风险的具体措施.在此基础上,介绍了田湾核电站严重事故情况下氢气控制的系统和方法,调试结果及历次大修对氢气控制系统的检查结果,表明该方法具备严重事故预防和缓解能力,安全风险处于受控状态,安全是有保障的,符合国家核安全局针对福岛核事故后对核电厂改进行动的通用技术要求.  相似文献   

14.
采用严重事故一体化分析程序MELCOR,对国产先进压水堆核电厂进行系统建模,选取大破口触发的严重事故进行校核计算研究,获得了严重事故工况下核电厂关键参数的瞬态特性和非能动系统响应特性,并与安全分析报告中MAAP的计算结果进行了对比分析。结果表明:虽然校核计算结果与安全分析报告中的结果存在一定差异,但总体上事故序列和主要参数的变化趋势吻合良好,并且都能够在严重事故情况下保持压力容器和安全壳的完整性,放射性裂变产物释放量极低,缓解措施的设计能够有效缓解事故进程,满足核电厂的安全要求。  相似文献   

15.
严重事故氢气燃爆缓解措施的初步研究   总被引:1,自引:0,他引:1  
轻水堆核电站发生严重事故时,氢气的大体积氢燃爆可能会严重威胁安全壳的完整性.氢气点火器与氢气复合器是2种严重事故下的氢气燃爆缓解设备.本文分别研究了3种氢气燃爆缓解措施,包括仅采用氢气点火器、仅采用氢气复合器和采用氢气复合器结合点火器.结果表明,采用氢气复合器结合点火器的方式可以安全、持续、有效地降低大体积氢燃爆带来的风险.  相似文献   

16.
This study was conducted as part of the construction of an integrated system to mechanistically evaluate flame acceleration characteristics in a containment of a nuclear power plant during a severe accident. In the integrated analysis system, multi-dimensional hydrogen distribution and combustion analysis codes are used to consider three-dimensional effects of the hydrogen behaviors. GASFLOW is used for the analysis of a hydrogen distribution in the containment. For the analysis of a hydrogen combustion in the containment, an open-source CFD (computational fluid dynamics) code OpenFOAM is chosen. Data of the hydrogen and steam distributions obtained from a GASFLOW analysis are transferred to the OpenFOAM combustion solver by a conversion and interpolation process between the solvers. The combustion solver imports the transferred data and initializes the containment atmosphere as an initial condition of a hydrogen combustion analysis. The turbulent combustion model used in this study was validated by evaluating the F22 test of the FLAME experiment. The coupled analysis method was applied for the analysis of a hydrogen combustion during a station blackout accident in an APR1400. In addition, the characteristics of the flame acceleration depending on a hydrogen release location are comparatively evaluated.  相似文献   

17.
新建核电厂的设计必须做到“实际消除”早期与大量放射性释放的可能性,氢气燃爆导致的安全壳失效是必须要“实际消除”的严重事故工况之一。因此对各种消氢措施的特点进行分析研究,建立联合消氢策略评价方法,可为先进压水堆核电厂氢气控制策略选择设计评价提供支持手段。根据严重事故管理中对氢气控制策略的考虑,研究安全壳内局部位置的可燃性是相关设计评价的关键问题。根据可燃性准则、火焰加速准则、燃爆转变准则,本文使用三维CFD程序对典型严重事故工况下安全壳蒸汽发生器隔间内的可燃性及氢气风险进行模拟分析。研究结果表明,虽然喷放源项中有大量水蒸气,蒸汽发生器隔间中仍有较大区域处于可燃限值以内,合理布置的点火器能在设计中点燃并消除氢气。本研究建立的分析方法能用于对核电厂氢气控制策略选择设计的评价。  相似文献   

18.
Instrumentation and monitoring systems in a nuclear power plant are very important to monitor plant conditions for safe operations and a plant shutdown. The severe accident at TOKYO ELECTRIC POWER COMPANY's Fukushima Daiichi Nuclear Power Station (hereinafter called as TF1) in March 2011 caused several severe situations such as core damage, hydrogen explosion, etc. Lessons learned from the severe accident at TF1 show that an appropriate operable instrumentation and monitoring system for a severe accident should be developed so that the system will deliver an appropriate performance for mitigation of severe accident condition in a nuclear power plant.

This paper proposes the classification method of severe accident condition for the development of an appropriate operable instrumentation and monitoring system for a severe accident based on the problem analysis of monitoring variables during the severe accident at TF1. The classification is formed on the basis of the integrity of boundary for plant safety and the successful (or unsuccessful) condition of the cooling water injection, and is used for an establishment of defining severe accident environmental conditions for the instrumentation and monitoring system. Examples of the establishment method are also shown in this paper.  相似文献   


19.
研究了1000MWe压水堆核电厂在典型的高压严重事故序列下卸压对氢气产生的影响。分析结果表明,开启1列、2列和3列卸压阀进行一回路卸压均会在堆芯熔化进程的3个阶段导致氢气产生率的明显增大:1)堆芯温度1500~2100K;2)堆芯温度2500~2800K;3)从形成由硬壳包容的熔融池(2800K)到熔融物向压力容器下封头下落。开启卸压阀的列数越多,氢气产生率的增大越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号