首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
福岛核事故后,核工业界及核安全监管当局对严重事故更加重视,严重事故管理指南(SAMG)的制订已经成为国内核安全监管要求.核电厂制定了应急运行规程(EOP)用以防止核电厂事故升级为严重事故,在SAMG研制时,如何从EOP合理地过渡到SAMG成为必须解决的问题.本文详细分析了EOP与SAMG的接口准则和影响因素,并结合国内核电厂SAMG研制现状,对EOP与SAMG接口方案进行了分析和建议,可为其他核电厂SAMG的研制工作提供参考.  相似文献   

2.
压水堆核电厂严重事故对策   总被引:1,自引:0,他引:1  
描述了严重事故的过程和现象,分析了严重事故管理。系统地介绍了西屋用户集团(WOG)严重事故管理技术基础和构成:严重事故管理导则(SAMG)的主控室导则、技术支持中心(TSC)使用导则、计算辅助导则和退出导则。归纳了西屋事故对策的整体逻辑,并对我国开展严重事故对策研究提出建议。  相似文献   

3.
二代改进型核电厂严重事故下一回路卸压时机敏感性研究   总被引:1,自引:0,他引:1  
一回路卸压是核电厂缓解严重事故的必要手段,也是严重事故管理导则(SAMG)的重要内容,国内核电厂严重事故管理中对一回路卸压的要求并不相同,本文基于典型二代改进型核电厂SAMG演练的场景,使用一体化计算程序MAAP4,对一回路卸压时机进行敏感性分析,比较不同卸压时机对缓解严重事故效果的影响,所给出的结论可为相同类型核电厂制定严重事故管理策略时提供参考。  相似文献   

4.
大亚湾核电站严重事故管理导则的审查和验证   总被引:1,自引:0,他引:1  
根据大亚湾核电站严重事故管理导则(SAMG)编写过程中的审查和验证行动,介绍了SAMG的审查过程以及验证过程的组织、方法和验证结论。  相似文献   

5.
依据先进非能动压水堆的严重事故管理导则(SAMG),消防系统中的防火喷淋系统,尽管属于非安全相关的系统,仍可以作为严重事故缓解策略,在以下三个方面起到严重事故缓解的作用:减少放射性气溶胶的质量;安全壳降温降压;安全壳注水。因此本文利用一体化严重事故分析程序,选取典型事故序列,评估防火喷淋系统在严重事故中的三种缓解作用的有效性为防火喷淋在严重事故管理导则中的应用提供技术支持。分析结果表明,防火喷淋系统能够实现堆腔淹没,在一定时间内进行安全壳降压,以及减少安全壳中放射性气溶胶的含量的作用,但由于系统限制,防火喷淋进行堆腔淹没的流量不能满足安全限值,并且只能推迟而不能够避免安全壳的失效。防火喷淋系统对严重事故的缓解作用虽然是有限的,但可为其他相关系统或设备的修复提供一定时间。  相似文献   

6.
百万千瓦级压水堆严重事故卸压阀高温瞬态分析   总被引:1,自引:1,他引:0       下载免费PDF全文
由于核电厂严重事故的恶劣工况,在卸压过程中严重事故卸压阀门可能会经历阀门无法承受的高温瞬态而导致不可用。本文在可能导致高压熔堆的事故序列中筛选出具有一定的包络性并包含各种典型严重事故现象的典型严重事故序列。针对该事故序列考虑严重事故管理中的开阀时间范围开展了高温瞬态计算,并针对重要的影响因素阀门开启时刻的稳压器水位开展分析。最终确定了百万千瓦级核电厂具备典型性及一定包络性的严重事故卸压阀工作条件,并得到了阀门开启前后阀门可能经历的最高流体温度及流体温度变化曲线,为严重事故卸压阀门的设备鉴定及功能应用提供了重要基础。   相似文献   

7.
先进非能动压水堆设计采用自动卸压系统(ADS)对一回路进行卸压,严重事故下主控室可手动开启ADS,缓解高压熔堆风险。然而ADS的设计特点可能导致氢气在局部隔间积聚,带来局部氢气风险。本文基于氢气负面效应考虑,对利用ADS进行一回路卸压的策略进行研究,为严重事故管理提供技术支持。选取全厂断电始发的典型高压熔堆严重事故序列,利用一体化事故分析程序,评估手动开启第1~4级ADS、手动开启第1~3级ADS、手动开启第4级ADS 3种方案的卸压效果,并分析一回路卸压对安全壳局部隔间的氢气负面影响。研究结果表明,3种卸压方案均能有效降低一回路压力。但在氢气点火器不可用时,开启第1~3级ADS以及开启第1~4级ADS卸压会引起内置换料水箱隔间氢气浓度迅速增加,可能导致局部氢气燃爆。因此,基于氢气风险考虑,建议在实施严重事故管理导则一回路卸压策略时优先考虑采用第4级ADS进行一回路卸压。  相似文献   

8.
在日本福岛核事故后,国家核安全局要求核电运营单位提升应对严重事故的能力。按照国家核安全局要求,秦山一厂开发了严重事故管理导则。应用MELCOR程序建立了秦山一厂严重事故分析模型,模拟典型严重事故序列,根据严重事故管理导则的缓解对策,分析实施事故缓解对策对核电厂主要参数的影响,从而验证事故缓解对策的有效性。分析结果表明:在严重事故情况下,按照严重事故管理导则实施缓解对策,可有效地延缓或终止堆芯损坏的过程。  相似文献   

9.
在百万千瓦级压水堆核电厂中为防止高压熔堆严重事故发生时发生高压熔喷(HPME)和安全壳直接加热(DCH),参考EPR堆型在稳压器上额外设置严重事故卸压阀(SADV),对主系统进行快速卸压。建立百万千瓦级压水堆核电厂事故分析模型,选取丧失厂外电叠加汽动辅助给水泵失效,一回路管道小破口以及丧失主给水三条典型严重事故序列,进行系统热工水力及卸压能力分析。计算结果表明:如果不开启严重事故卸压阀,三条事故序列在压力容器下封头失效时一回路压力均较高,有发生高压熔喷和安全壳直接加热的风险。根据严重事故管理导则开启严重事故卸压阀,可以有效降低一回路压力,三条事故序列均可以防止高压熔喷和安全壳直接加热发生。针对卸压阀阀门面积的影响进行分析,表明阀门面积减小到4.8×10-3 m2后下封头失效时RCS压力会有所增加,仍然能够满足RCS的卸压要求,且可延迟下封头失效时间。  相似文献   

10.
以全球首个采用非能动设计的三代核电技术的三门核电厂为分析对象,结合电厂现行严重事故管理导则(SAMG),研究安全壳严重威胁状态下的氢气风险控制。使用一体化事故分析程序建立了电厂模型,分析了热段2英寸破口叠加专设安全设施失效导致产生超过100%活性区锆水反应产氢量的严重事故序列。在此假想工况下安全壳水冷功能失效导致事故后安全壳处于惰化环境中,而产生了安全壳超压风险和氢气风险并存的不利情况。对比分析了仅执行严重威胁导则-2(SCG-2)恢复安全壳水冷和执行SCG-2后执行SCG-3控制安全壳氢气风险的两种情况,结果表明开启/关闭安全壳水冷功能在一定程度上缓解了安全壳的超压风险和氢气风险,可为严重事故管理导则的具体实施提供技术支持。  相似文献   

11.
This paper focuses on the fourth level of the defence in depth concept in nuclear safety, including the transitions from the third level and into the fifth level. The use of the severe accident management guideline (SAMG) is required when an accident situation is not handled adequately through the use of emergency operating procedures (EOP), thus leading to a partial or a total core melt. In the EOPs, the priority is to save the fuel, whereas, in the SAMG, the priority is to save the containment. Actions recommended in the SAMG aim at limiting the risk of radiologically significant radioactive releases in the short- and mid-term (a few hours to a few days). The paper describes basic severe accident management requirements related to nuclear power plant (NPP), specified by the IAEA and in Republic of Bulgaria Nuclear Legislation. It also surveys plant specific severe accident management (SAM) strategies for the Kozloduy NPP, equipped with WWER-1000 type reactors.  相似文献   

12.
The effect of SAMG (Severe Accident Management Guidance) entry condition on operator action time for prevention of reactor vessel failure in the OPR1000 (Optimized Power Reactor 1000) was evaluated with a comparison to other conditions using the SCDAP/RELAP5/MOD3 computer code in detail. Dominant severe accident sequences, such as a station blackout, a total loss of feedwater, a small and medium break loss of coolant accidents without a safety injection were evaluated in this study. The results showed that a core exit temperature of 480 °C for the SAMG entry condition was too early, but a core exit temperature of 1000 °C was too late for operator action time to prevent reactor vessel failure. The SAMG entry condition of a core exit temperature of 650 °C for the OPR1000 was suitable for the operator action timing point in order to mitigate a severe accident.  相似文献   

13.
选取导致堆芯熔化频率最高的始发严重事故--直接注入(DVI)管线断裂事故,以及典型高压熔堆事故--丧失主给水始发事故(LOFW),利用MAAP4程序,分析反应堆堆芯热工水力行为,并对正常余热排出系统(RNS)堆芯注水策略的有效性与负面效应进行评估。分析结果表明,在DVI管线断裂事故和LOFW严重事故序列中,利用RNS进行堆芯注水可有效终止堆芯熔化进程,维持堆芯长期冷却。但堆芯再淹没会产生更多的氢气,存在增加安全壳氢气燃烧风险的可能性。此外通过分析利用严重事故管理导则中辅助计算文件给出的堆芯最小流量实施堆芯注水策略,讨论注水流量对堆芯冷却的影响,结果表明,在实施堆芯注水策略时,建议在系统允许的情况下采用更高的流速进行堆芯冷却。  相似文献   

14.
Fundamental mechanisms behind the molten core cooling strategies are revisited to provide an insight for a proper implementation of severe accident management guideline (SAMG) and a development of an engineered safety feature. From the results of a qualitative evaluation and a quantitative plant analysis, weak points of the current severe accident management guideline for an operating plant are identified and a revision of the molten core cooling strategies is proposed. In addition, technical issues for various kinds of core catcher concepts are discussed.  相似文献   

15.
Severe accident analysis for Korean OPR1000 with MELCOR 1.8.6 was performed by adapting a mitigation strategy under different entry conditions of Severe Accident Management Guidance (SAMG). The analysis was focused on the effectiveness of the mitigation strategy and its adverse effects. Four core exit temperatures (CETs) were selected as SAMG entry conditions, and Small Break Loss of Coolant Accident (SBLOCA), Station Blackout (SBO), and Total Loss of Feed Water (TLOFW) were selected as postulated scenarios that may propagate into severe accidents. In order to delay reactor pressure vessel (RPV) failure, entering the SAMG when the CET reached 923 K, 923 K, and 753 K resulted in the best results for SBLOCA, SBO, and TLOFW scenarios, respectively. This implies that using event-based diagnosis for severe accidents may be more beneficial than using symptom-based diagnosis. There is no significant difference among selected SAMG entry conditions in light of the operator's available action time before the RPV failure. Potential vulnerability of the RPV due to hydrogen generation was analyzed to investigate the foreseeable adverse effects that act against the accident mitigation strategies. For the SBLOCA cases, mitigation cases generated more hydrogen than the base case. However, the amount of hydrogen generated was similar between the base and mitigation cases for SBO and TLOFW. Hydrogen concentrations of containment were less than 5% before RPV failure for most cases.  相似文献   

16.
Severe accident analysis of a reactor is an important aspect in evaluation of source term. This in turn helps in emergency planning and Severe Accident Management (SAM). The use of the Severe Accident Management Guideline (SAMG) is required for accident situation which is not handled adequately through the use of Emergency Operating Procedures (EOP), thus leading to a partial or a total core melt. Actions recommended in the SAMG aim at limiting the risk of radiologically significant radioactive releases in the short- and mid-term (a few hours to a few days). Initiation of SAMG for VVER-1000 is considered at two core exit temperatures viz. 650 °C as a desirable entry temperature and 980 °C as a backup action. Analyses have been carried out for VVER-1000 (V320) for verification of some of the strategies namely water injection in primary and secondary circuit. These strategies are analysed for a high and low pressure primary circuit transients. Station Black Out (SBO) is one such high pressure transient for which core heat can be removed by natural circulation of the primary circuit inventory by maintaining the secondary side inventory. This strategy has been verified where the feed water injection to secondary side of SG is considered from external power sources (e.g. mobile DG sets) as suggested in SAM guidelines. The second transient, a low pressure event is analysed for verification of the SG flooding and core flooding strategies. The analysis shows that SG flooding is not adequate to arrest the degradation of the core. In case of core flooding strategy, the analyses show that core flooding is not adequate to arrest the degradation of the core for the large break LOCA where as for small break LOCA the injections through available safety systems are adequate. The assessments are carried out with integral severe accident computer code ASTEC V1.3.  相似文献   

17.
熔融物堆内滞留(IVR)是一项核电厂重要的严重事故管理措施,通过将熔融物滞留在压力容器内,以保证压力容器完整性,并防止某些可能危及安全壳完整性的堆外现象。对于高功率和熔池中金属量相对不足的反应堆,若下封头形成3层熔池结构,则其顶部薄金属层导致的聚焦效应可能对压力容器完整性带来更大的威胁。本文考虑通过破口倒灌及其他工程措施实现严重事故下熔池顶部水冷却,建立熔池传热模型,分析顶部注水的带热能力,建立事件树,分析顶部注水措施的成功概率及IVR的有效性。结果表明,通过压力容器内外同时水冷熔融物,能显著增强IVR措施的有效性。  相似文献   

18.
Reactor coolant system (RCS) injection using accumulator is an important strategy for both emergency operating procedure (EOP) and severe accident management guideline (SAMG) of pressurized water reactor (PWR) nuclear power plant. Once accumulator injection starts, the operator is requested to close the accumulator isolation valve to avoid nitrogen gas flow into RCS as the water level is low. Current accumulator water level indication system is not designed for this purpose. In emergency operating procedure, it relies on the steam generator pressure to close the accumulator isolation valve.The purpose of this paper is to develop a computational aid for estimating RCS injection volume of accumulator. First of all, simple accumulator model is verified using the plant data during a station blackout incident of Maanshan nuclear power plant. An isentropic expansion model is found better than adiabatic expansion model. Then, a computational aid is developed based on this model. Using this computational aid, the accumulator water level can be judged directly from the accumulator pressure. This computational aid can be applied for typical PWR nuclear power plants in both emergency operating procedure and severe accident management guideline.  相似文献   

19.
Hydrogen source term and hydrogen mitigation under severe accidents is evaluated for most nuclear power plants (NPPs) after Fukushima Daiichi accident. Two units of Pressurized Heavy Water Reactor (PHWR) are under operating in China, and hydrogen risk control should be evaluated in detail for the existing design. The distinguish feature of PHWR, compared with PWR, is the horizontal reactor core surrounded by moderator in calandria vessel (CV), which may influence the hydrogen source term. Based on integral system analysis code of PHWR, the plant model including primary heat transfer system (PHTS), calandria, end shield system, reactor cavity and containment has been developed. Two severe accident sequences have been selected to study hydrogen generation characteristic and the effectiveness of hydrogen mitigation with igniters. The one is Station Blackout (SBO) which represents high-pressure core melt accident, and the other is Large Break Loss of Coolant Accident (LLOCA) at reactor outlet header (ROH) which represents low-pressure core melt accident. Results show that under severe accident sequences, core oxidation of zirconium–steam reaction will produce hydrogen with deterioration of core cooling and the water in CV and reactor cavity can inhibits hydrogen generation for a relatively long time. However, as the water dries out, creep failure happens on CV. As a result, molten core falls into cavity and molten core concrete interaction (MCCI) occurs, releasing a large mass of hydrogen. When hydrogen igniters fail, volume fraction of hydrogen in the containment is more than 15% while equivalent amount of hydrogen generate from a 100% fuel clad-coolant reaction. As a result, hydrogen risk lies in the deflagration–detonation transition area. When igniters start at the beginning of large hydrogen generation, hydrogen mixtures ignite at low concentration in the compartments and the combustion mode locates at the edge of flammable area. However, the power supply to igniters should be ensured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号