首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
产氚包层是聚变堆的关键系统,其设计与研发是我国参与ITER计划的重要研究领域。氦冷/固态氚增殖剂产氚包层采用锂陶瓷材料,目前,国际上最为关注的是具有较为优异和全面氚增殖特性的LinSiO4和Li2TiO3等。  相似文献   

2.
为满足中国聚变工程实验堆(CFETR)包层的应用要求,本文提出氦冷陶瓷增殖(HCCB)包层方案。为验证HCCB包层设计方案的合理性与可行性,采用三维蒙特卡罗粒子输运程序MCNP,计算和分析了HCCB包层方案的氚增殖比、中子壁负载、中子通量密度、核热、辐照损伤等中子学特性。结果表明,HCCB包层方案满足氚自持要求,中子通量密度和核热分布合理,屏蔽性能良好,基本满足设计要求。  相似文献   

3.
在未来核聚变反应堆中,为补充氚的消耗,需要在核聚变堆的包层中进行氚的在线增殖,以维持核聚变反应的持续进行。为验证这一关键技术,在国际热核聚变实验堆(ITER)上开展了ITER TBM计划(实验包层项目)。作为ITER计划成员方之一,中方以中国氦冷固态增殖剂实验包层模块(HCCB TBM)概念参与ITER TBM计划。HCCB TBM现今进入初步设计阶段,而材料的制备技术和性能数据是支撑其结构设计、安全分析和服役工况评估的基础。本文综述和分析了HCCB TBM结构材料低活化铁素体/马氏体钢(RAFM钢)与功能材料氚增殖剂和中子倍增剂的研究现状,并对这些材料下一步的研究方向进行了展望。  相似文献   

4.
在未来核聚变反应堆中,为补充氚的消耗,需要在核聚变堆的包层中进行氚的在线增殖,以维持核聚变反应的持续进行。为验证这一关键技术,在国际热核聚变实验堆(ITER)上开展了ITER TBM计划(实验包层项目)。作为ITER计划成员方之一,中方以中国氦冷固态增殖剂实验包层模块(HCCB TBM)概念参与ITER TBM计划。HCCB TBM现今进入初步设计阶段,而材料的制备技术和性能数据是支撑其结构设计、安全分析和服役工况评估的基础。本文综述和分析了HCCB TBM结构材料低活化铁素体/马氏体钢(RAFM钢)与功能材料氚增殖剂和中子倍增剂的研究现状,并对这些材料下一步的研究方向进行了展望。  相似文献   

5.
氦冷固态增殖剂包层是中国聚变工程实验堆(CFETR)的3种候选包层概念之一。本文基于中国核工业西南物理研究院提出的一种氦冷固态增殖剂包层概念,通过蒙特卡罗输运程序MCNP5建立了包层三维中子学模型,探究了不同几何布置方案及结构设计参数对包层产氚性能的影响,得到了全堆氚增殖比(TBR)及极向各包层模块产氚分布,并由优化后的模型得到了包层模块核热分布。结果表明,优化后的TBR达到1.177,满足氚自持的最低要求。  相似文献   

6.
为测量聚变堆固态氚增殖剂堆内辐照氚增殖剂的产氚速率,除用常规电离室之外,本研究建立了Ne载气的高精度气相色谱在线检测分析方法,通过测量产氚回路中的氦产生量,验证系统中产生的氚量,从而为聚变堆固态包层产氚包层增殖剂材料辐照产氚性能提供一种新的产氚速率测量验证方法。本工作通过研制含有三个检测器、五个色谱柱的气相色谱分析系统,建立了Ne中微量4He、H2及杂质组分的色谱检测分析方法,并完成了实时在线检测的验证实验。结果表明,研发的色谱分析系统可实现高纯Ne中4He、H2及杂质组分的检测分析,H24He检测限可分别达到1.0×10-6、5.9×10-6,各组分含量及峰面积的相对标准偏差(sr)均小于5.0%(n=6),线性相关系数(r2)均大于0.99,说明检测方法重复性好。根据Ne中多组分气体的在线检测验证实验可知,单时段和多时段内的测量重复性均较好,可为辐照产氚考核系统中的产氚速率验证提供分析手段,进而为正式入堆得到辐照数据和氚衡算提供技术支持。  相似文献   

7.
为提升聚变堆包层产氚性能,更好地满足氚自持要求,首先,基于中子微扰理论与模拟退火算法开发了适用于聚变堆产氚包层(TBB)中子学优化新算法与新程序。其次,选取中国聚变工程实验堆(CFETR)氦冷固态包层,完成了全堆中子学性能优化的示范性应用。最后,对优化后的包层方案进行了热工、流体、结构的三维有限元校核。结果表明:(1)相比于传统包层中子学优化算法,本文所提出的优化算法具有更好的优化效果与更高的优化效率;(2)本文所开发的智能优化程序可更好地满足聚变堆TBB中子学优化与设计的需求,可为包层设计提供算法理论基础与程序支撑。  相似文献   

8.
为验证在中国先进研究堆(CARR)内进行国际热核聚变实验堆(ITER)氚增殖包层模块(TBM)辐照实验的可行性和安全性,进行了氚增殖剂球床组件堆内辐照物理及热工计算分析。氚增殖剂包层模块主要是固态氚增殖剂陶瓷球床。本文采用Monte Carlo粒子输运模拟程序对氚增殖剂球床进行堆内建模,计算球床的中子注量率、能量沉积和产额,得到不同功率下球床的中子注量率、发热功率和产氚速率以及球床组件引入反应堆的反应性。根据物理计算得到的组件各部件发热情况建立热工计算一维模型,通过更改反应堆功率得到满足实验要求的工况并采用三维程序进行验证。物理与热工计算分析的结果表明,在反应堆运行功率为20 MW的工况下球床组件各部件的温度均不超过限值。  相似文献   

9.
氚输运分析是开展中国氦冷固态增殖剂实验包层系统安全分析及未来聚变堆氚自持运行的重要研究内容之一。基于氚输运理论和固态增殖剂包层系统设计,利用FDS凤麟核能团队开发的聚变系统氚分析程序TAS,构建了固态增殖剂包层系统氚输运分析系统动力学模型。该模型氚输运结果与文献报道的吻合得很好,误差小于6%,验证了模型的正确性。针对中国氦冷固态增殖剂实验包层系统氚输运问题进行了两种计算方法(稳态、脉冲模式)的初步分析,获得了氚提取系统、氦气冷却系统回路氚分压,实验包层模块冷却流道、窗口室内氚提取系统和氦气冷却系统回路材料中氚滞留量,窗口室内氚提取系统和氦气冷却系统回路氚日渗透量等数据。最终对比结果显示,脉冲模式分析方法能够实时地跟踪源项的快速变化,更符合中国氦冷固态增殖剂实验包层系统实际运行情况。窗口室内氦气冷却系统回路材料中氚滞留量占到日产氚量的31.3%,因此需要在这些氚滞留损失严重的部位考虑适当的阻氚措施。  相似文献   

10.
本文以中国聚变工程试验堆(CFETR)的氦冷固态包层和水冷固态包层为研究对象,基于蒙特卡罗程序MCNP和计算流体力学程序FLUENT,利用3D-1D-2D耦合方法和伪材料方法,分别对200 MW的氦冷固态包层和水冷固态包层及1.5 GW的水冷固态包层方案进行了核热耦合计算分析。研究结果表明,金属铍的热散射效应和轻水密度是聚变包层核热耦合效应的主要来源,核热耦合效应对氦冷固态包层的影响可忽略,对水冷固态包层的氚增殖比和温度分布有一定程度的影响。  相似文献   

11.
《Fusion Engineering and Design》2014,89(7-8):1119-1125
ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R&D activities for each TBM module with the auxiliary system are introduced.The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R&D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.  相似文献   

12.
Using the Monte Carlo transport code MCNP.neutronic calculation analysis for China helium cooled ceramic breeder test blanket module(CN HCCB TBM) and the associated shield block(together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model.Key nuclear responses of HCCB TBM-set.such as the neutron flux,tritium production rate,nuclear heating and radiation damage,have been obtained and discussed.These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set,such as thermal-hydraulics,thermal-mechanics and safety analysis.  相似文献   

13.
The Indian Test Blanket Module(TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development(RD) is focused on two types of breeding blanket concepts: lead–lithium ceramic breeder(LLCB) and helium-cooled ceramic breeder(HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic RD program for DEMO relevant technology development. In the HCCB concept Li_2TiO_3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept(case-1), the ceramic breeder beds are kept horizontal in the toroidal–radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept(case-2), the pebble bed is vertically(poloidal–radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2 D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations.Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.  相似文献   

14.
The Indian test blanket module(TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the RD activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices(ITER relevant and DEMO).The Indian Lead–Lithium Cooled Ceramic Breeder(LLCB) blanket concept is one of the Indian DEMO relevant TBM,to be tested in ITER as a part of the TBM program.Helium-Cooled Ceramic Breeder(HCCB) is an alternative blanket concept that consists of lithium titanate(Li_2TiO_3) as ceramic breeder(CB) material in the form of packed pebble beds and beryllium as the neutron multiplier.Specifically,attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions.These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.  相似文献   

15.
In a fusion reactor, the prediction of tritium release behavior from breeder blanket is important to design the tritium recovery system, but the amount of tritium generated is necessary information to do that. Hence, tritium generation and recovery studies on lithium ceramics packed bed have been started by using fusion neutron source (FNS) in Japan Atomic Energy Agency (JAEA). Lithium titanate (Li2TiO3) was selected as tritium breeding material, and its packed bed was enclosed by the beryllium blocks, and was kept at certain temperature during fusion neutron irradiation. During irradiation, the packed bed was purged with the sweep gas continuously, and tritium released was trapped in each gas absorber selectively by chemical form. In this work, the effect of sweep gas species on tritium release behavior was investigated. In the case of sweep by helium with 1% of hydrogen, tritium in water form was released sensitively corresponding to the irradiation. This is due to existence of the water vapor in the sweep gas. On the other hand, in the case of sweep by helium without water vapor, tritium in gaseous form was released first, and release of tritium in water form was delayed from gaseous tritium and was gradually increased.  相似文献   

16.
氦冷固态增殖包层是中国聚变工程实验堆(CFETR)的3种候选包层概念之一,氚增殖球床是包层的核心部件,采用硅酸锂颗粒作为氚增殖材料。球床结构对氚在球床内的输运行为及流动和传热均有重要影响。本文基于离散单元法(DEM)生成了满足氚增殖球床填充率要求的随机堆积结构,通过CFD计算获取了球床结构下氚在吹扫气体内的等效扩散系数及吹扫气体的流动特性,包括速度分布、压力分布及进出口压降;开展了外加热流及有内热源两种工况下球床等效导热系数的模拟。计算结果表明,球床结构下氚在吹扫气体内的等效扩散系数为二元气体扩散系数的40%;受球床结构影响,球床内存在流动迟滞区,壁面出现流动加速;拟合得到Ergun方程的黏性阻力系数C1=87;有内热源工况下的球床等效导热系数低于外加热流工况下的球床等效导热系数。  相似文献   

17.
针对聚变堆固态包层设计路线,提出了一个交叉排列氦冷固态包层概念。设计采用Be、Li2TiO3分层球床。两种尺寸的氦气冷却管道交叉排列,分两个回路同时冷却,以增加系统安全可靠性。分析比较了4种6Li富集度布置方案。结果表明:径向远离第一壁降低6Li富集度较为合理,靠近第一壁的增殖层6Li富集度不能过低,以减少长期运行中Li的消耗对氚增殖性能的影响。借助蒙特卡罗程序MCNP建立11.25°对称模型,全堆包层氚增殖率为1.176,包层寿期内产氚性能稳定,在包层寿命运行时间内的燃耗分布相对均匀。  相似文献   

18.
氚增殖剂Li4SiO4 陶瓷小球的制备工艺   总被引:1,自引:1,他引:0  
欧洲和中国聚变堆固态产氚包层(TBM)的氚增殖剂倾向于采用直径0.5~2mm的Li4SiO4陶瓷小球填充床。本工作探讨锂陶瓷小球的性能指标设计,研究挤压-滚圆、烧结法制备Li4SiO4小球的工艺可行性,测试分析小球的密度、直径、球形度、晶粒尺寸、压碎载荷等性能。研究表明:挤压-滚圆成型、1050℃无压烧结的Li4SiO4陶瓷小球密度为90.4%TD,堆积密度为52.9%TD;平均直径为0.95mm,标准偏差为0.15mm;球形度为1.10;平均压碎载荷为18.50N,标准偏差为2.76N;平均晶粒尺寸为14μm;相结构由Li4SiO4主晶相、少量Li2SiO3和Li2Si2O5等组成。采用优化的挤压 滚圆、烧结工艺可制备出合格的Li4SiO4陶瓷小球产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号