首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
《核动力工程》2016,(5):63-67
在模块化小型反应堆非能动安全系统综合模拟实验装置上进行波动管小破口尺寸失水事故实验,研究波动管小破口失水事故过程中的热工水力现象和非能动安全系统运行特性。模块化小型反应堆发生失水事故后,压力平衡管和安注管线内流体的密度差可以驱动堆芯补水箱(CMT)内的冷流体注入反应堆压力容器,压力平衡管裸露后CMT安注流量出现波动;安注箱(ACC)的安注对事故初期的堆芯冷却效果显著;经自动卸压系统卸压后,内置换料水箱(IRWST)可以对堆芯进行持续稳定的安注和冷却。研究结果表明:波动管小破口失水事故中,非能动安注系统可以对堆芯进行有效注水,并带走堆芯衰变热量。  相似文献   

2.
为了分析核电厂冷却剂丧失事故(LOCA)的瞬态响应,用于支持核电厂概率安全分析(PSA)成功准则的研究。本文以压水堆核电厂为研究对象,利用系统分析程序建立了电厂模型,研究了堆芯补水箱、安注箱、余热排出热交换器和ADS阀门的失效组合及操作员动作时间、破口尺寸等的敏感性,得出如下结论:在小LOCA事故下,如果3个ADS-4阀门能够开启(自动或安注信号产生后30 min手动开启)且1条IRWST注入管线可用或者1个ADS-4阀门开启(自动开启或安注信号产生后30 min手动开启)且安注信号产生后30 min手动启动一台正常余热排出系统(RNS)泵,则能够维持堆芯冷却;在中等LOCA事故下,至少一个CMT或ACC投入运行,3个ADS-4阀门开启(自动或安注信号产生后20 min手动开启)且1条IRWST注入管线可用或者1个ADS-4阀门开启(自动或安注信号产生后20 min手动开启)且在安注信号产生后20 min内启动一台RNS泵,则能够维持堆芯冷却。  相似文献   

3.
为研究先进非能动(AP)型核电厂在非能动系统失效条件下的安全性能,利用我国先进堆芯冷却机理整体试验台架(ACME)开展了非能动余热排出(PRHR)管线破口失水试验研究,分析了主要的试验进程和破口位置对事故过程各阶段关键参数的影响。结果表明,ACME PRHR管线破口试验进程与冷管段小破口失水事故(SBLOCA)进程基本一致,再现了非能动核电厂自然循环阶段、自动卸压系统(ADS)喷放阶段和安全壳内置换料水箱(IRWST)安注阶段的安全特性;在不同破口位置的试验中,非能动堆芯冷却系统(PXS)均可保证堆芯得到补水,堆芯活性区始终处于混合液位以下;破口位置对ACME LOCA事故进程、反应堆冷却剂系统(RCS)初期降压速率、PRHR热交换器(HX)流量、喷放流量、堆芯液位、IRWST安注流量等参数具有显著影响,对堆芯补水箱(CMT)和蓄压安注箱(ACC)安注流量的影响较小。   相似文献   

4.
非能动堆芯冷却系统LOCA下冷却能力分析   总被引:1,自引:0,他引:1  
本文基于机理性分析程序建立了包括反应堆一回路冷却剂系统、专设安全设施及相关二次侧管道系统的先进压水堆分析模型,对典型的小破口失水事故和大破口失水事故开展了全面分析。针对不同破口尺寸、破口位置的失水事故,分析了非能动堆芯冷却系统(PXS)中非能动余热排出系统(PRHRS)、堆芯补水箱(CMT)、安注箱(ACC)、自动卸压系统(ADS)和安全壳内置换料水箱(IRWST)等关键系统的堆芯注水能力和冷却效果。研究表明,虽然破口尺寸、破口位置会影响事故进程发展,但所有事故过程中燃料包壳表面峰值温度不超过1 477 K,且反应堆堆芯处于有效淹没状态。PXS能有效排出堆芯衰变热,将反应堆引导到安全停堆状态,防止事故向严重事故发展。  相似文献   

5.
李飞  沈峰  白宁  孟召灿 《原子能科学技术》2017,51(12):2224-2229
采用RELAP5/MOD3.2系统程序建立一体化小型反应堆的事故分析模型,包括反应堆冷却剂系统(RCS)、简化的二回路系统和专设安全设施。一体化多用途的非能动小型压水反应堆(SIMPLE)热功率为660 MWt(电功率大于200 MWe)。针对SIMPLE的直接安注管线(DVI)双端断裂事故和DVI2英寸(50.8mm)小破口失水事故(SBLOCA)进行分析。计算结果表明:对于直接安注管线双端断裂事故,破口和自动降压系统(ADS)能有效地使反应堆冷却系统降压,安注箱(ACC)和安全壳内置换料水箱(IRWST)能实现堆芯补水,确保堆芯冷却;对于DVI的SBLOCA,非能动专设安全设施能有效对RCS进行冷却和降压,防止堆芯过热。  相似文献   

6.
安注箱主要用于在核电站发生大中破口事故时快速向一回路注入含硼水,安注箱的有效注入流量和持续注入时间对于缓解事故后果有重要影响。本文基于华龙一号安注箱在一回路破口事故工况下的注入特性,通过FLOWMASTER建立计算模型,对安注箱下游直接注入管线阻力特性、安注箱容积和安注箱初始蓄压进行敏感性分析,在满足安全分析要求的基础上,为进一步优化安注箱的设计提供依据。计算分析表明,合理选取直接注入管线的管径和管线布置参数、优化安注箱初始蓄压能进一步提升安注箱的安全性能,进一步减小安注箱容积,节省反应堆厂房空间。  相似文献   

7.
超临界水冷堆CSR1000大破口失水事故分析   总被引:2,自引:0,他引:2  
为了验证中国超临界水冷堆CSR1000的安全特性,评估CSR1000安全系统的性能,采用APROS程序进行了该堆型的冷段大破口失水事故分析。冷段大破口情况下,喷放阶段的显著特征是堆芯冷却剂在冷段破口喷放作用下迅速发生反向流动,热段的高温、低密度流体进入堆芯导致堆芯传热恶化,包壳温度迅速上升。自动卸压系统(ADS)阀门的启动可恢复堆芯冷却剂正向流动,有效缓解堆芯过热。高压给水箱(HFT)可提供事故早期的堆芯冷却剂供给,并为低压安注的启动提供足够的响应时间。喷放结束后,堆芯逐渐被低压安注再淹没。冷段大破口的最高包壳温度为920℃,低于安全限值(1260℃)约340℃,出现在喷放阶段。  相似文献   

8.
开展了模块化小堆稳压器波动管双端破口试验研究,获得了非能动安全系统的事故响应特性和一回路系统参数变化。试验研究结果表明,在稳压器波动管双端破口极端工况条件下,中压安注箱能在短时间内提供较大的稳定安注流量,及时补充系统水装量;高压安注系统运行过程比较复杂,安注流量与堆芯补水箱压力平衡管线内介质状态和中压安注系统运行状态密切相关,在1.7 h内呈间歇注入运行状态。在整个事故过程中,堆芯一直处于淹没状态,模块化小堆非能动安全系统能够确保稳压器波动管在双端破口极端工况条件下的堆芯安全。   相似文献   

9.
对于AP型核电站小破口失水事故(SBLOCA)试验进程,国内外有较为一致的认识,但对于相同尺寸破口在不同破口位置对试验进程、非能动堆芯冷却系统的影响仍需进一步研究。本文利用大型非能动堆芯冷却整体试验台架ACME开展了非能动余热排出系统(PRHRS)隔离阀前后破口事故试验工况研究,并以堆芯补水箱(CMT)侧冷管底部破口事故工况作为对比工况。试验结果表明:ACME开展的PRHRS隔离阀前后破口事故模拟工况事故进程符合典型SBLOCA进程,堆芯始终处在良好的冷却状态,非能动堆芯冷却系统的安全性得到有效验证;相同破口尺寸工况下,不同破口位置对事故进程有一定的影响,其中破口位置对CMT液位、安注流量的影响较为关键。对比工况中,PRHRS设备换热量也有较大不同,冷管破口和隔离阀后破口工况较隔离阀前破口工况换热量更大,但PRHRS换热管内部流动换热机理需进一步研究。  相似文献   

10.
针对核电站额定运行工况下发生冷段大破口失水事故进行了分析。分析结果表明,低压安注系统在冷段注入再循环和在冷、热段同时注入再循环时能保证堆芯冷却,并防止硼酸结晶。  相似文献   

11.
选取导致堆芯熔化频率最高的始发严重事故--直接注入(DVI)管线断裂事故,以及典型高压熔堆事故--丧失主给水始发事故(LOFW),利用MAAP4程序,分析反应堆堆芯热工水力行为,并对正常余热排出系统(RNS)堆芯注水策略的有效性与负面效应进行评估。分析结果表明,在DVI管线断裂事故和LOFW严重事故序列中,利用RNS进行堆芯注水可有效终止堆芯熔化进程,维持堆芯长期冷却。但堆芯再淹没会产生更多的氢气,存在增加安全壳氢气燃烧风险的可能性。此外通过分析利用严重事故管理导则中辅助计算文件给出的堆芯最小流量实施堆芯注水策略,讨论注水流量对堆芯冷却的影响,结果表明,在实施堆芯注水策略时,建议在系统允许的情况下采用更高的流速进行堆芯冷却。  相似文献   

12.
研究压水堆一回路管道小小破口失水事故叠加辅助给水失效导致的高压堆芯熔化严重事故进程,对比验证不同严重事故缓解措施入口温度条件下一回路卸压缓解途径的充分性和有效性,并确认较佳的一回路冷却系统(RCS)降压途径。结果显示,以低于650℃的温度作为降压缓解措施入口条件,可及时恢复可能的堆芯冷却能力。一、二回路卸压效果分析表明,考虑了长期衰变热移出注水流量和堆芯过冷度要求,较佳的卸压配置为初期打开一列稳压器卸压阀,同时迅速恢复辅助给水并开启蒸汽发生器卸压阀。   相似文献   

13.
An evaluation of the ex-vessel core catcher system of a sample advanced light water reactor was presented. The core catcher was designed to cool down the molten corium through a combined injection of water and gas from the bottom of the molten corium, which could be effective in the reduction of rapid steam generation. By using the MELCOR code, a scenario analysis was performed for a representative severe accident scenario of the ALWR, that is, the 6-in. large break loss of coolant accident without safe injection. The spreading characteristics of ejected corium at vessel breach were asymptotically evaluated on the core catcher horizontal surface. The composition of the molten corium, the decay power level, and the sacrificial concrete ablation depth with time were obtained by a sacrificial concrete ablation analysis. The corium cooling history in the core catcher during the coolant injection was evaluated to calculate the temporal steam generation rate by considering an energy conservation equation. These were used as the major inputs for the temporal calculations of containment pressure which was performed by using the GASFLOW code. Several cases with change of water and gas injection rates were calculated. It was confirmed that the bottom water/gas injection system was an effective corium cooling method in the ex-vessel core catcher to suppress the quick release of steam.  相似文献   

14.
Cold-leg small-break loss-of-coolant accident (LOCA) tests were performed at the ROSA-IV Large Scale Test Facility (LSTF), a 1/48 volumetrically-scaled model of a pressurized water reactor (PWR). The tests were conducted for break areas ranging 0.5–10% of the scaled cold leg area, and simulated hypothetical total failure of the high pressure injection (HPI) system. One of the tests, conducted with 1% break area, included an intentional depressurization of the primary system that was initiated after the onset of core dryout. A simple prediction model is proposed for prediction of times of major events, namely, loop seal clearing, core dryout, accumulator (ACC) injection and actuation of low pressure injection (LPI) system. Test data and model calculations show that intentional primary system depressurization with use of the pressurizer power-operated relief valves (PORVs) is effective for break areas of approximately 0.5% or less, is unnecessary for breaks of approximately 5% or more, and might be insufficient for intermediate break areas to maintain adequate core cooling. It is also shown that there might be possibility of core dryout after ACC injection and before LPI injection for break areas less than approximately 2.5%.  相似文献   

15.
采取堆腔注水策略冷却熔融池对缓解严重事故后果、降低安全壳的失效概率具有十分重要的作用。本文采用SCDAP/RELAP5程序,首先以韩国APR1400相关实验结果对堆腔外部注水自然对流冷却能力进行比对分析,然后建立了耦合堆腔注水措施的融熔池冷却的核电厂模型,以非能动压水堆为研究对象,针对冷段大破口失水事故(LBLOCA)始发严重事故序列,分析堆芯熔融进展过程中实施堆腔注水策略后融熔池的冷却特性及堆腔外部注水的自然循环能力。分析结果表明,LBLOCA下,当堆芯出口温度达到923K时,实施堆腔注水后能有效冷却下封头内的熔融池,从而保持压力容器的完整性。  相似文献   

16.
本文采用集总参数法,在先进非能动压水堆核电厂严重事故一体化分析模型基础上,考虑先进压水堆非能动安全特性以及严重事故下采取熔融物堆内滞留(IVR)措施等特性对氢气风险的影响,开展了典型严重事故下安全壳内氢气风险分析。分别选取了冷段双端剪切断裂大破口、冷段大破口叠加IRWST重力注水有效以及ADS-4误启动三个典型大破口失水事故序列,对事故进程中的氧化温度、产氢速率以及产氢质量等特性进行了研究。选取产氢量最大的冷段大破口叠加IRWST重力注水有效事故序列,分析了氢气点火器系统的消氢效果。结果表明,堆芯再淹没过程产生大量氢气,采用点火器可有效去除安全壳内的氢气,从而降低氢气燃爆风险。  相似文献   

17.
胡啸  黄挺  裴杰  陈炼 《原子能科学技术》2015,49(11):2069-2075
根据现有的设计资料,使用一体化严重事故分析程序MELCOR1.8.6建立了核电厂一、二回路系统,非能动堆芯冷却系统和安全壳系统的模型,并模拟冷段2英寸(5.08cm)小破口叠加重力注入失效的严重事故发生后,将冷却剂注入堆芯的情形,分析其对严重事故进程的缓解能力。本文选取3个严重事故的不同阶段,将冷却剂分别以小流量(10kg/s)、中流量(50kg/s)和大流量(200kg/s)的速率注入堆芯,通过比较氢气产生量、堆芯放射性产生量及堆芯温度等数据来评估在严重事故不同阶段再注水的可行性。结果表明:在堆芯损伤初期,可认为10kg/s以上的流量足以冷却百万千瓦级事故安全。而当严重事故发展到堆芯开始坍塌阶段,200kg/s的注水流量可认为是基本可行的,而小于此流量的注水应慎重考虑。  相似文献   

18.
For the test process of small break loss of coolant accident (SBLOCA) of AP type nuclear power plant, there is a more consistent understanding at home and abroad. However, the influence of the same size of the break on the test process and passive core cooling system in different locations still needs further study. In this paper, a large passive core cooling integrated test facility ACME was used to study the break accident test conditions of passive residual heat removal system (PRHRS) before and behind the isolation valve, and the bottom break test of the cold pipe of core makeup tank (CMT) was used as the contrast condition. The test results show that the accident process of PRHRS before and behind the isolation valve is in accordance with the process of SBLOCA, the core is always in a good cooling statement and the safety of passive core cooling system is effectively verified. There is a certain impact on the accident process for the same break size and different break locations, and the location of the break has a key impact on the CMT level and safety injection flow. In contrast, the heat transfer of PRHRS equipment is also quite different. The heat transfer of cold pipe break and break behind the isolation valve is greater than break before the isolation valve, however, the flow and heat transfer mechanism of PRHRS heat exchange tube needs further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号