首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对宽带低噪声放大器带宽内增益波动性大的问题,设计一种平坦高增益的宽带低噪声放大器。采用两级放大器级联形式,在第一级放大电路中引入负反馈电路,设计ATF-54143的偏置电路并分析其稳定性。在两级放大电路之间添加增益补偿网络,改善宽带低噪声放大器的阻抗匹配和增益平坦度。仿真结果表明,在0.9~2.5GHz频率范围内,该宽带低噪声放大器的增益为(30.0±0.3)dB,噪声系数小于1.5dB,输入、输出反射系数均小于-10dB,达到设计要求。在误差允许范围内,实物测试结果与仿真结果相符合。  相似文献   

2.
设计了一种基于共源结构的两级级联超宽带低噪声放大器.该低噪声放大器采用了源端电感和四分之一阻抗变换器,在不恶化电路噪声系数的情况下具有较好的输入匹配.通过使用GaAs赝调制掺杂异质结场效应晶体管( pHEMT)器件,在PCB板上实现了低噪声放大器的加工,加工测试结果与原理图仿真结果基本符合.测试结果表明,该低噪声放大器的增益达到12±1.5 dB,最小噪声系数为1.8 dB,输入输出匹配结果良好.  相似文献   

3.
基于0.25μm GaAs pHEMT工艺,设计了一款工作频率为0.1 GHz~8.0 GHz的超宽带低噪声放大器,采用单级共源共栅(cascode)结构,使用电阻并联负反馈扩展了低噪声放大器的带宽,并且采用电感中和技术补偿了高频增益与提高频率响应。仿真结果表明:该款低噪声放大器的分数带宽高达195%,噪声系数小于1.32 dB,最高增益为21.2 dB,1 dB压缩点为16 dBm。在砷镓化合物工艺设计的低噪放中,本文拥有195%的分数带宽,较高的增益和较低的噪声系数。  相似文献   

4.
运用变压器反馈技术,基于65 nm CMOS工艺设计了一款紧凑型宽带低噪声放大器。电路采用两级共源共栅结构,基于变压器的输入匹配网络实现了宽带输入匹配,漏源正反馈提高了电路的增益,漏源负反馈增强了其稳定性,电路总面积仅为0.156 mm2。仿真结果表明,设计的宽带低噪声放大器的最大增益为18.2 dB,3dB带宽为31~45 GHz, 1 dB带宽为32~44 GHz。在36 GHz时,最低噪声系数为4.5 dB,1dB带宽内噪声系数均低于5.2 dB。  相似文献   

5.
针对信号频段为3.1~10.6GHz的超宽带系统射频前端,提出一种基于0.13μm CMOS技术的低噪声放大器设计与实现.该放大器采用两级结构,通过第一级单端型电阻反馈和第二级单端转差分型电压缓冲器的级联设计,在获得足够的信号功率增益的同时,能够实现超宽带范围内的输入匹配.整体电路仿真结果表明:在3.1~10.6GHz的工作频段,电压增益为23.2dB,输入回波损耗小于-13dB.在6GHz时噪声系数最小值为2.4dB,最大值为2.7dB,输入三阶交调截取点(IIP3)为-11.9dBm.在1.2V电源电压下,该低噪声放大器功耗为12.2mW,芯片面积为0.32mm2.  相似文献   

6.
为实现802.11a接收单元,设计一款适用于802.11a协议具有镜像抑制功能的低噪声放大器(LNA).电路采用源简并结构,对有源陷波滤波器加以优化,可极大地减小了滤波网络的功耗和芯片面积,提高镜像抑制比,替代传统超外差接收机片外实现滤波器方式.电路采用Jazz 0.18μm SiGe BiCMOS进行工艺仿真,结果表明:在5.15~5.35GHz的工作频段和3.5~3.7GHz镜像频段下,电路可以实现18.52dB的功率增益,小于-13dB的反射系数,3.1~3.4dB的噪声系数和33.75dB的镜频抑制比;5.2GHz频率下的输入3阶交调点为-9.58dBm,电源电压为1.8V,总功耗为13mW,有源滤波器功耗仅为0.57mW.  相似文献   

7.
该文根据对晶体管结构和低噪声放大器原理的分析,利用ADS软件设计了一个低噪声放大器。通过采用HBT晶体管,设计偏置电路、负反馈电路和输入输出匹配电路,实现在2GHz频率下,低噪声放大器绝对稳定,增益大于13dB,噪声系数低于1.0dB,输出驻波比小于1.3,输入驻波比小于2.5。  相似文献   

8.
一种低功耗CMOS并行双频低噪声放大器   总被引:2,自引:0,他引:2  
基于SMIC 0.18μm 1P6M CMOS工艺,设计实现了一种低功耗单端输入转差分输出的并行双频低噪声放大器。采用带有源级电感负反馈的共源共栅结构,在功耗限制下在双频段对输入阻抗和噪声性能同时进行优化,实现并行接收,并具有单端输入转差分输出的功能。该低噪声放大器核心电路尺寸为450μm×350μm。仿真表明,低噪声放大器(LNA)在1.227GHz和1.575GHz工作频率处的输入回波损耗分别为-11.61dB和-12dB,功率增益分别为14.67dB和12.68dB,噪声系数分别为2.3dB和2.53dB,输入l dB压缩点分别为-18.5dBm和-14.5dBm。在1.8V电源电压下,功耗仅为8.4mW,可用于航空航天领域的电子系统中。  相似文献   

9.
基于65 nm CMOS工艺,设计了一款工作频率为33~48 GHz的毫米波宽带低噪声放大器。采用两级共源共栅(cascode)结构,使用噪声减小技术优化了噪声系数,并运用错峰匹配网络提高了低噪声放大器的增益平坦度并扩展带宽。测试实验表明,该款低噪声放大器的1dB带宽为35~45 GHz, 3dB带宽为33~48 GHz,最大增益为20.6 dB,电路直流功耗为24.8 mW,最小噪声系数为4.2 dB。  相似文献   

10.
在传统的窄带达林顿结构放大器基础上,提出一种新型高增益超宽带达林顿结构低噪声放大器.该放大器采用高频低噪声晶体管,采用电感补偿技术和正实电阻补偿技术,保持了达林顿放大器高增益的优点,而且也取得了低噪声、良好输入输出匹配和宽带稳定性.通过优化设计,新型放大器在3.1~6 GHz内,增益S21高达21 dB,变化不超过0.3 dB,噪声系数F为1.5~2.1 dB,输入输出反射系数S11和S22都小于-14 dB,在宽带内保持稳定.  相似文献   

11.
仿真设计了一款 X 波段低噪声放大器( LNA ),选用 NEC 公司的高电子迁移率晶体管NE3210S01,直流偏置电路采用双电源供电,采用低阻抗特性的扇形微带短截线代替旁路电容和3λ/4高阻抗线阻止射频信号对直流的影响,用源极负反馈的方法增加稳定性,并采用微带线耦合的方式达到隔直流的效果,借助 ADS软件进行设计、仿真和优化。仿真结果显示,放大器在9.5 GHz 10.5 GHz频率范围内增益为(24.2±0.5) dB,噪声系数小于0.8 dB,输入、输出驻波比均小于1.5,结果显示该款低噪声放大器适用于雷达系统。  相似文献   

12.
采用0.15μm砷化镓赝配高电子迁移率晶体管工艺,设计一款频率400 MHz~2.4GHz宽带低噪声放大器。采用两级级联结构,将前级放大器的输入阻抗匹配到最佳噪声阻抗得到最小噪声;后级放大器采用负反馈结构得到较宽的工作频带;级间引入失配补偿方法,即在晶体管增益滚降处引入高频增益,使得放大器工作频带拓宽,提高带内平坦度。仿真结果表明,该低噪声放大器工作频率为400 MHz~2.4GHz,频带内噪声系数为1dB,增益为34dB,增益平坦度为3.1dB,回波损耗优于-10dB,满足了低噪声、超宽带和高平坦度的要求。  相似文献   

13.
针对40Gb/s光通信系统对高速芯片的需求,设计出一种微波单片宽带驱动放大器。该放大器基于0.15μm砷化镓赝配高电子迁移率晶体管工艺,可用于驱动铌酸锂调制器。放大器的宽带实现方案选择分布式拓扑结构,增益单元选择带有耦合电容的共源共栅结构。利用ADS仿真软件进行设计仿真,结果显示,所设计的放大器在DC-35GHz的工作带宽内增益响应平坦,电压增益大于10dB,增益平坦度为±0.5dB,具驻波特性良好,其输入、输出反射系数在频带内的典型值均小于-10dB;在1dB压缩点的输出功率为20dBm,故设计方案可行。  相似文献   

14.
一种基于TSMC 0.18μm CMOS工艺的5.1GHz频率下的CMOS低噪声放大器。采用源极电感负反馈共源共栅电路结构,使放大器具有较高的增益和反相隔离度,保证较高的品质因数和信噪比。利用ADS对电路进行调试和优化,设计出低功耗、低噪声、高增益、高稳定性的低噪声放大器。通过ADS软件仿真得到较好的结果:在1.8V电压下,输入输出匹配良好,电路增益为16.12dB,噪声系数为1.87 dB,直流功耗为9.84mA*1.8V。  相似文献   

15.
基于0.18μm SiGe BiCMOS工艺,设计了一款应用于WLAN 802.11频段的低噪声放大器(LNA).采用了共射级的两级级联结构,发射极运用电感负反馈,有效地提高了增益和线性度.仿真结果表明,在5~6GHz工作频段内,小信号增益S21达20.5 dB,噪声系数NF低于2 dB,正向传输系数S11小于-19 dB和反向传输系数S22小于-18 dB,实现了较好的输入输出匹配.  相似文献   

16.
一种基于CMOS工艺的差分低噪声放大器设计   总被引:1,自引:0,他引:1  
研究低噪声放大器(LNA)的结构以及性能参数,采用电路仿真软件ADS(Advanced Design System)设计一个基于台积电(TSMC)0.25μmCMOS工艺的2.5GHz差分低噪声放大器。通过在输出端增加共源极的优化方法,对其进行电路结构的改进,得到一个高性能的实用低噪声放大器,并利用版图软件CadenceVirtuoso对其实现版图设计。  相似文献   

17.
提出一种基于改进型负反馈电路的宽带低噪声放大器.放大器芯片采用0.25 μm GaAs pHEMT工艺设计和SiP技术封装.通过调节封装内芯片外围负反馈电路实现增益平坦度优化,将低噪放工作频带拓展至0.5~2.5 GHz,可有效覆盖GSM、TD-SCDMA、WCDMA、GPS等多个应用频段.片内的稳压及温度补偿有源偏置电路可对供电电压波动及环境温度变化进行有效补偿,以适应复杂工作环境.经测试,低噪声放大器的供电电压为3.3 V,功耗为40 mW,工作频率为0.5~2.5 GHz,带宽高达5个倍频程,带内增益约为14 dB,增益平坦度≤1 dB,噪声系数≤1.3 dB,输入输出回波损耗≤-10 dB,输入三阶交调点≥1 dBm,封装后尺寸为3 mm×3 mm×1 mm.  相似文献   

18.
在系统中集成超宽带(UWB)收发机芯片用于支持室内定位正成为移动通信终端技术发展的一个重要趋势.在超宽带收发机中,低噪声放大器(LNA)是一个核心功能模块.超宽带的全频段(3.1~10.6 GHz)覆盖要求给低噪声放大器的设计带来了巨大挑战,尤其是需要在宽带匹配及在带内维持平坦的噪声系数的情况下.传统的低噪声放大器架构...  相似文献   

19.
设计了一款无螺旋电感的1~6 GHz频段的小面积高性能SiGe HBT宽带低噪声放大器(wideband low noise amplifier,WLNA).采用具有优良阻抗匹配特性的共基放大器作为输入级,并采用噪声抵消技术抵消其噪声达到输入噪声匹配;共射放大器作为输出级,有源电感替代螺旋电感实现电感峰化技术来扩展频带宽度、提高增益的平坦度.基于Jazz 0.35μm SiGe BiCMOS工艺,完成了版图设计,WLNA的版图尺寸仅为105μm×115μm,与使用螺旋电感的WLNA相比,芯片面积大大减小.利用安捷伦公司的射频/微波集成电路仿真工具ADS进行了验证.结果表明:该WLNA在1~6 GHz频段内,S21>16 dB,NF<3.5 dB,S11<-10 dB,S22<-10 dB.对于设计应用于射频前端的小面积、低成本、高性能的单片WLNA具有一定的指导意义.  相似文献   

20.
介绍了S波段低噪声放大器(LNA)的设计原理,阐述了利用电感串联反馈技术来实现放大器的噪声系数和输入匹配相互矛盾的两方面达到较好的折中,使得电路的结果达到最优。电路在Agilent公司的射频设计软件ADS2003进行仿真和优化,仿真结果是低噪声放大器在2.44GHz的工作频率下,增益G>11dB,噪声系数NF<1.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号