首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide ( 5 f ) <0.03 μg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide ( 12 c ), 1 μg/mL, fluconazole 0.125 μg/mL) but both displayed comparable enzyme binding and inhibition ( 5 f Kd 62±17 nM, IC50 0.46 μM; 12 c Kd 43±18 nM, IC50 0.33 μM, fluconazole Kd 41±13 nM, IC50 0.31 μM, posaconazole Kd 43±11 nM, IC50 0.2 μM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c , was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.  相似文献   

2.
Although the role of Bcl‐2 phosphorylation is still under debate, it has been identified in a resistance mechanism to BH3 mimetics, for example ABT‐737 and S1 . We identified an S1 analogue, S1‐16 , as a small‐molecule inhibitor of pBcl‐2. S1‐16 efficiently kills EEE‐Bcl‐2 (a T69E, S70E, and S87E mutant mimicking phosphorylation)‐expressing HL‐60 cells and high endogenously expressing pBcl‐2 cells, by disrupting EEE‐Bcl‐2 or native pBcl‐2 interactions with Bax and Bak, followed by apoptosis. In vitro binding assays showed that S1‐16 binds to the BH3 binding groove of EEE‐Bcl‐2 (Kd=0.38 μM by ITC; IC50=0.16 μM by ELISA), as well as nonphosphorylated Bcl‐2 (npBcl‐2; Kd=0.38 μM ; IC50=0.12 μM ). However, ABT‐737 and S1 had much weaker affinities to EEE‐Bcl‐2 (IC50=1.43 and >10 μM , respectively), compared with npBcl‐2 (IC50=0.011 and 0.74 μM , respectively). The allosteric effect on BH3 binding groove by Bcl‐2 phosphorylation in the loop region was illustrated for the first time.  相似文献   

3.
Jian Yan  Zhibing Zheng 《ChemMedChem》2023,18(5):e202200573
Cereblon (CRBN) is a substrate receptor of E3 ubiquitin ligase as well as the target of thalidomide and lenalidomide, plays a vital role in endogenous protein degradation. In this article, two series of compounds with novel structure were designed, synthesized and evaluated against CRBN. YJ1b, designed based on our previous finding, shown strong binding affinity toward CRBN (IC50=0.206 μM) by forming a salt bridge interaction with amino acid residue Glu377 of CRBN, it was 13-fold compared with that of lenalidomide (IC50=2.694 μM) in TR-FRET assay. YJ2c and YJ2h, two analogs of YJ1b, also exhibit high binding affinity toward CRBN (IC50=0.211 μM and IC50=0.282 μM, respectively). While, molecular docking and 100 ns molecular dynamic simulation studies were conducted to insight into the unique binding mode of YJ1b, YJ2c and YJ2e toward CRBN. The new compounds with special binding mode in this article may serve for the further optimization and discovery of novel high potent CRBN ligands.  相似文献   

4.
A novel series of synthetic functionalized arylvinyl-1,2,4-trioxanes ( 8 a – p ) has been prepared and assessed for their in vitro antiplasmodial activity against the chloroquine-resistant Pf INDO strain of Plasmodium falciparum by using a SYBR green-I fluorescence assay. Compounds 8 g (IC50=0.051 μM; SI=589.41) and 8 m (IC50=0.059 μM; SI=55.93) showed 11-fold and >9-fold more potent antiplasmodial activity, respectively, as compared to chloroquine (IC50=0.546 μM; SI=36.63). Different in silico docking studies performed on many target proteins revealed that the most active arylvinyl-1,2,4-trioxanes ( 8 g and 8 m ) showed dihydrofolate reductase (DHFR) binding affinities on a par with those of chloroquine and artesunate. The in vitro cytotoxic potentials of 8 a – p were also evaluated against human lung (A549) and liver (HepG2) cancer cell lines along with immortalized normal lung (BEAS-2B) and liver (LO2) cell lines. Following screening, five derivatives viz. 8 a , 8 h , 8 l , 8 m and 8 o (IC50=1.65–31.7 μM; SI=1.08–10.96) were found to show potent cytotoxic activity against (A549) lung cancer cell lines, with selectivity superior to that of the reference compounds artemisinin (IC50=100 μM), chloroquine (IC50=100 μM) and artesunic acid (IC50=9.85 μM; SI=0.76). In fact, the most active 4-naphthyl-substituted analogue 8 l (IC50=1.65 μM; SI >10) exhibited >60 times more cytotoxicity than the standard reference, artemisinin, against A549 lung cancer cell lines. In silico docking studies of the most active anticancer compounds, 8 l and 8 m , against EGFR were found to validate the wet lab results. In summary, a new series of functionalized aryl-vinyl-1,2,4-trioxanes ( 8 a – p ) has been shown to display dual potency as promising antiplasmodial and anticancer agents.  相似文献   

5.
Despite the advances in developing MMP-2/9 inhibitors, off-target side effects and pharmacokinetics problems remain major challenges hindering their clinical success in cancer therapy. However, recent targeting strategies have clearly revitalized MMP research. Herein, we introduce new s-triazine-based dendrimers endowed with intrinsic MMP-2/9 inhibitory potential and tetherable to hepatocellular carcinoma-specific targeting ligands and anticancer agents via biodegradable linkages for targeted therapy. The designed dendrimeric platform was built with potential zinc-binding branching linkers (hydrazides) and termini (carboxylic acids and hydrazides) to confer potency against MMP-2/9. Preliminary cytotoxicity screening and MMP-2/9 inhibition assay of the free dendrimers revealed promising potency (MMP-9; IC50=0.35–0.57 μM, MMP-2; IC50=0.39–0.77 μM) within their safe doses (EC100=94.15–42.75 μM). The hydrazide dendrimer was comparable to NNGH and superior to the carboxylic acid analogue. MTT assay showed that the free dendrimers were superior to the reference anticancer agent honokiol. Their anticancer potency was enhanced by HK conjugation, targeting ligands installation and PEGylation as exemplified by the hydrazide dendrimer conjugate (TPG3−NH2)-SuHK-FA-SuPEG (Huh-7; IC50=5.54 μM, HepG-2; IC50=10.07 μM) being 4 folds more active than HK, followed by the carboxylic acid conjugate (TPG3−OH)-HK-LA-PEG (Huh-7; IC50=14.97, HepG-2; IC50=21.29 μM). This was consistent with apoptosis studies.  相似文献   

6.
Chagas disease and malaria are two neglected tropical diseases (NTDs) that prevail in tropical and subtropical regions in 149 countries. Chagas is also present in Europe, the US and Australia due to immigration of asymptomatic infected individuals. In the absence of an effective vaccine, the control of both diseases relies on chemotherapy. However, the emergence of parasite drug resistance is rendering currently available drugs obsolete. Hence, it is crucial to develop new molecules. Phthalimides, thiosemicarbazones, and 1,3-thiazoles have been used as scaffolds to obtain antiplasmodial and anti-Trypanosoma cruzi agents. Herein we present the synthesis of 24 phthalimido-thiosemicarbazones ( 3 a – x ) and 14 phthalimido-thiazoles ( 4 a – n ) and the corresponding biological activity against T. cruzi, Plasmodium falciparum, and cytotoxicity against mammalian cell lines. Some of these compounds showed potent inhibition of T. cruzi at low cytotoxic concentrations in RAW 264.7 cells. The most active compounds, 3 t (IC50=3.60 μM), 3 h (IC50=3.75 μM), and 4 j (IC50=4.48 μM), were more active than the control drug benznidazole (IC50=14.6 μM). Overall, the phthalimido-thiosemicarbazone derivatives were more potent than phthalimido-thiazole derivatives against T. cruzi. Flow cytometry assay data showed that compound 4 j was able to induce necrosis and apoptosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with compounds 3 h , 3 t , and 4 j at IC50 concentrations promoted changes in the shape, flagella, and surface of the parasite body similar to those observed in benznidazole-treated cells. The compounds with the highest antimalarial activity were the phthalimido-thiazoles 4 l (IC50=1.2 μM), 4 m (IC50=1.7 μM), and 4 n (IC50=2.4 μM). Together, these data revealed that phthalimido derivatives possess a dual antiparasitic profile with potential effects against T. cruzi and lead-like characteristics.  相似文献   

7.
In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50=0.78±0.01 μM), HT29 (IC50=0.92±0.15 μM) and K562 (IC50=47.25±1.24 μM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1/G0 phase and decreased cell population in G2/M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg−1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.  相似文献   

8.
The natural product piperlonguminine (PL) has been shown to exert potential anticancer activity against several types of cancer via elevation of reactive oxidative species (ROS). However, the application of PL has been limited due to its poor water solubility and moderate activity. To improve PL's potency, we designed and synthesized a series of 17 novel phenylmethylenecyclohexenone derivatives and evaluated their pharmacological properties. Most of them exerted antiproliferative activities against four cancer cell lines with IC50 values lower than PL. Among these, compound 10 e not only showed good water solubility and exerted the most potent antiproliferative activity against HGC27 cells (IC50=0.76 μM), which was 10-fold lower than PL (IC50=7.53 μM), but also exhibited lower cytotoxicity in human normal gastric epithelial cells GES-1 compared with HGC27 cells. Mechanistically, compound 10 e inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, and diminished mitochondrial transmembrane potential (MTP) in HGC27 cells. Furthermore, 10 e also induced G2/M cell-cycle arrest, and triggered cancer cell apoptosis through the regulation of apoptotic proteins. Finally, 10 e promoted DNA damage in HGC27 cells via the activation of the H2AX(S139ph) and p53 signaling. In conclusion, 10 e , with prominent tumor selectivity and water solubility, could be a promising candidate for the treatment of cancer and, as such, warrants further investigation.  相似文献   

9.
Chagas disease affects 6–8 million people worldwide, remaining a public health concern. Toxicity, several adverse effects and inefficiency in the chronic stage of the disease are the major challenges regarding the available treatment protocols. This work involved the synthesis of twenty-two 1,4-disubstituted-1,2,3-triazole analogues of benznidazole (BZN), by using a click chemistry strategy. Analogues were obtained in moderate to good yields (40-97 %). Antitrypanosomal activity was evaluated against the amastigote forms of Trypanosoma cruzi. Compound 8 a (4-(2-nitro-1H-imidazol-1-yl)methyl)-1-phenyl-1H-1,2,3-triazole) without substituents on phenyl ring showed similar biological activity to BZN (IC50=3.0 μM, SI>65.3), with an IC50=3.1 μM and SI>64.5. Compound 8 o (3,4-di-OCH3−Ph) with IC50 = 0.65 μM was five-fold more active than BZN, and showed an excellent selectivity index (SI>307.7). Compound 8 v (3-NO2, 4-CH3−Ph) with IC50=1.2 μM and relevant SI>166.7, also exhibited higher activity than BZN. SAR analysis exhibited a pattern regarding antitrypanosomal activity relative to BZN, in compounds with electron-withdrawing groups (Hammett σ+) at position 3, and electron-donating groups (Hammett σ-) at position 4, as observed in 8 o and 8 v . Further research might explore in vivo antitrypanosomal activity of promising analogues 8 a , 8 o , and 8 v . Overall, this study indicates that approaches such as the bioisosteric replacement of amide group by 1,2,3-triazole ring, the use of click chemistry as a synthesis strategy, and design tools like Craig-plot and Topliss tree are promising alternatives to drug discovery.  相似文献   

10.
Checkpoint kinase 1 (CHK1) is a central component in DNA damage response and has emerged as a target for antitumor therapeutics. Herein, we describe the design, synthesis, and biological evaluation of a novel series of potent diaminopyrimidine CHK1 inhibitors. The compounds exhibited moderate to potent CHK1 inhibition and could suppress the proliferation of malignant hematological cell lines. The optimized compound 13 had a CHK1 IC50 value of 7.73±0.74 nM, and MV-4-11 cells were sensitive to it (IC50=0.035±0.007 μM). Furthermore, compound 13 was metabolically stable in mouse liver microsomes in vitro and displayed moderate oral bioavailability in vivo. Moreover, treatment of MV-4-11 cells with compound 13 for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Based on these biochemical results, we consider compound 13 to be a promising CHK1 inhibitor and potential anticancer therapeutic agent.  相似文献   

11.
More than 50 new inhibitors of the oncogenic Stat3 protein were identified through a structure–activity relationship (SAR) study based on the previously identified inhibitor S3I‐201 (IC50=86 μM , Ki>300 μM ). A key structural feature of these inhibitors is a salicylic acid moiety, which, by acting as a phosphotyrosine mimetic, is believed to facilitate binding to the Stat3 SH2 domain. Several of the analogues exhibit higher potency than the lead compound in inhibiting Stat3 DNA binding activity, with an in vitro IC50 range of 18.7–51.9 μM , and disruption of Stat3–pTyr peptide interactions with Ki values in the 15.5–41 μM range. One agent in particular exhibited potent inhibition of Stat3 phosphorylation in both breast and multiple myeloma tumor cells, suppressed the expression of Stat3 target genes, and induced antitumor effects in tumor cells harboring activated Stat3 protein.  相似文献   

12.
A significant improvement in the treatment of trypanosomiases has been achieved with the recent development of nifurtimox–eflornithine combination therapy (NECT). As an alternative to drug combinations and as a means to overcome most of the antitrypanosomatid drug discovery challenges, a multitarget drug design strategy has been envisaged. To begin testing this hypothesis, we designed and developed a series of quinone–coumarin hybrids against glyceraldehyde‐3‐phosphate dehydrogenase/trypanothione reductase (GAPDH/TR). These enzymes belong to metabolic pathways that are vital to Trypanosoma brucei and Trypanosoma cruzi, and have thus been considered promising drug targets. The synthesized molecules were characterized for their dual‐target antitrypanosomal profile, both in enzyme assays and in in vitro parasite cultures. The merged derivative 2‐{[3‐(3‐dimethylaminopropoxy)‐2‐oxo‐2H‐chromen‐7‐yl]oxy}anthracene‐1,4‐dione ( 10 ) showed an IC50 value of 5.4 μM against TbGAPDH and a concomitant Ki value of 2.32 μM against TcTR. Notably, 2‐{4‐[6‐(2‐dimethylaminoethoxy)‐2‐oxo‐2H‐chromen‐3‐yl]phenoxy}anthracene‐1,4‐dione (compound 6 ) displayed a remarkable EC50 value for T. brucei parasites (0.026 μM ) combined with a very low cytotoxicity toward mammalian L6 cells (7.95 μM ). This promising low toxicity of compound 6 might be at least partially due to the fact that it does not interfere with human glutathione reductase.  相似文献   

13.
A series of 22 different 3,5-diarylidenetetrahydro-2H-pyran-4(3H)-ones (DATPs) were synthesized, characterized, and screened for their in vitro antiplasmodial activities against chloroquine (CQ)-sensitive Pf3D7, CQ-resistant PfINDO, and artemisinin-resistant PfMRA-1240 strains of Plasmodium falciparum. DATP 19 ( 3,5-bis(4-hydroxy-3,5-dimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) was found to be the most potent (IC50 1.07 μM) against PfMRA-1240, whereas 21 (3,5-bis(3,4,5-trimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) showed IC50 values of 1.72 and 1.44 μM against Pf3D7 and PfINDO, respectively. Resistance indices (RI) as low as 0.2 to 0.5 for 10 (3,5-bis(4-nitrobenzylidene)tetrahydro-2H-pyran-4(3H)-one) and 20 (3,5-bis(3-nitrobenzylidene)tetrahydro-2H-pyran-4(3H)-one), and <1 for most other DATPs reveals their greater potency against resistant strains than the sensitive one. The single-crystal XRD data for DATP 21 are reported. In silico support was obtained through docking studies. Killing all three strains within 4–8 h, these DATPs showed rapid kill kinetics toward the trophozoite stage. Furthermore, DATP 18 (3,5-bis(quinolin-4-ylmethylene)tetrahydro-2H-pyran-4(3H)-one) inhibited PfPdx1 enzyme activity with IC50 20.34 μM, which is about twofold lower than that (IC50 43 μM) for an already known inhibitor 4PEHz. At an oral dose of 300 mg/kg body weight, DATPs 19 and 21 were found to be nontoxic to mice, and at 100 mg/kg body weight, DATP 19 was found to suppress parasitaemia, which led to an increase in median survival time by three days relative to untreated control mice in a malaria curative study.  相似文献   

14.
Bacterial quorum sensing has received much attention in recent years because of its relevance to pathological events such as biofilm formation. Based on the structures of two lead inhibitors (IC50: 35–55 μM ) against autoinducer‐2‐mediated quorum sensing identified through virtual screening, we synthesized 39 analogues and examined their inhibitory activities. Twelve of these new analogues showed equal or better inhibitory activities than the lead inhibitors. The best compound showed an IC50 value of ~6 μM in a whole‐cell assay using Vibrio harveyi as the model organism. The structure–activity relationship is discussed herein.  相似文献   

15.
The sodium salt of di ((1-hydroxy-2-benzothiazolium-1-yl) ethyliden-1,1-H-bisphosphonic acid) orthophosphate was synthesized and its toxicity and viability effects screened on two different human neuroblastoma cell lines. This novel derivative of benzothiazole provides a new compound in connection with research and therapeutic application for tumor cell growth inhibition. Benzothiazole was alkylated in reaction with bromoacetic acid and then converted to its H-bisphosphonic acid derivative in presence of H3PO3/POCl3. The procedure led to formation of two molecules of corresponding H-bisphosphonic acid which attached together via a phosphate bridge. The investigated compound exhibits activities (IC50 value) ranging from 14–23 μM (corresponding to human neuroblastoma SK-BE (2) and SK-NM-C cells).  相似文献   

16.
AS Leal  R Wang  JA Salvador  Y Jing 《ChemMedChem》2012,7(9):1635-1646
A series of ursolic acid ((1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)‐10‐hydroxy‐1,2,6a,6b,9,9,12a‐heptamethyl‐2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b‐tetradecahydro‐1H‐picene‐4a‐carboxylic acid) derivatives with a 12‐fluoro‐13,28β‐lactone moiety were synthesized using the electrophilic fluorination reagent Selectfluor. The antiproliferative effects of these novel compounds were evaluated in AsPC‐1 pancreatic cancer cells, and the structure–activity relationships (SARs) were evaluated. Of the compounds synthesized, ursolic acid derivatives carrying a heterocyclic ring, such as imidazole or methylimidazole, and cyanoenones were among the more potent inhibitors of AsPC‐1 pancreatic cancer cell growth. 2‐Cyano‐3‐oxo‐12α‐fluoro‐urs‐1‐en‐13,28β‐olide, compound 20 , was the most effective inhibitor with IC50 values of 0.7, 0.9 and 1.8 μM in pancreatic cancer cell lines AsPC‐1, MIA PaCa‐2 and PANC‐1, respectively. This compound also exhibited better antiproliferative activities against breast (MCF7), prostate (PC‐3), hepatocellular (Hep G2) and lung (A549) cancer cell lines, with IC50 values lower than 1 μM . The mechanism of action by which these compounds exert their biological effect was evaluated in AsPC‐1 cells using the most potent inhibitor synthesized, compound 20 . At 1 μM , the cell cycle arrested at the G1 phase with upregulation of p21waf1. Apoptosis was induced at an inhibitor concentration of 8 μM with upregulation of NOXA and downregulation of c‐FLIP. These data indicate that fluorolactone derivatives of ursolic acid have improved antiproliferative activity, acting through arrest of the cell cycle and induction of apoptosis.  相似文献   

17.
Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide ( 5 b ) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6 – 8 , 9 b , as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide ( 9 b ) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates ( 9 a , 9 c – f , and 11 a – f ) and 2′-aminoanilides ( 10 a – f and 12 a – f ), related to 9 b , to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC50: 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2′-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50HDAC3=0.113 μM). When tested in U937 leukemia cells, the hydroxamates 9 e , 11 c , and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b , 11 c , 10 b , 10 e , and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.  相似文献   

18.
Statins are commonly prescribed antilipidemic and anticholesterol class of drugs. In addition to their major role, they have been found to have anticancer effects on in vitro, animal and clinical studies. The aim of this study was to investigate the effects of six different statins (rosuvastatin, pravastatin, simvastatin, lovastatin, fluvastatin, and atorvastatin) on A549 cancer cells lipids by Fourier transform infrared (FTIR) spectroscopy. Proliferation tests were carried out to detect the half-maximal inhibitory concentrations (IC50) of each statin on A549 cells. The IC50 values were 50 μM for simvastatin, 150 μM for atorvastatin and pravastatin, and 170 μM for fluvastatin, 200 μM for rosuvastatin and lovastatin on A549 cells. No correlation was found between the antiproliferative effects of the statins and lipid-lowering effect. The cells were treated with IC5, IC10, and IC50 values of each statins concentration and lipid extracts were compared using FTIR spectroscopy. The results indicated that different statins had different effects on the lipid content of A549 cells. The FTIR spectra of the lipid exctracts of statin-treated A549 cells indicated that the value of hydrocarbon chain length, unsaturation index, oxidative stress level, and phospholipid containing lipids increased except for rosuvastatin-treated A549 cells. In addition, rosuvastatin significantly lowered cholesterol ester levels. In conclusion, the contrasting effects of rosuvastatin should be further investigated.  相似文献   

19.
A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non‐cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT) in J774A.1 macrophage cell‐based assays. The 8‐aza‐7‐deazapurine derivative of adefovir (PMEA) was found to be the most potent ACT inhibitor in the series (IC50=16 nm ) with substantial selectivity over mammalian adenylate cyclases (mACs). AC inhibitory properties of the most potent analogues were confirmed by direct evaluation of the corresponding phosphonodiphosphates in cell‐free assays and were found to be potent inhibitors of both ACT and edema factor (EF) from Bacillus anthracis (IC50 values ranging from 0.5 to 21 nm ). Moreover, 7‐halo‐7‐deazapurine analogues of PMEA were discovered to be potent and selective mammalian AC1 inhibitors (no inhibition of AC2 and AC5) with IC50 values ranging from 4.1 to 5.6 μm in HEK293 cell‐based assays.  相似文献   

20.
Methyl‐2‐amino‐5‐[2‐(4‐methoxyphenethyl)]thiophene‐3‐carboxylate ( 8 c ) is the prototype of a well‐defined class of tumor‐selective agents. Compound 8 c preferentially inhibited the proliferation of a number of tumor cell lines including many human T‐lymphoma/leukemia cells, but also several prostate, renal, central nervous system and liver tumor cell types. Instead, a broad variety of other tumor cell lines including B‐lymphomas and HeLa cells were not affected. The tumor selectivity (TS; selectivity index or preferential suppression of CEM lymphoma (IC50=0.90 μM ) versus HeLa tumor cell carcinoma (IC50=39 μM )) amounted up to ~43 for 8 c . At higher concentrations, the compound proved cytotoxic rather than cytostatic. The antiproliferative potency and selectivity of 8 c could be preserved by replacing the ethyl linker between the 2‐amino‐3‐carboxymethylthiophene and the substituted aryl by a thioalkyl but not by an oxyalkyl nor an aminoalkyl. Among >50 novel 8 c derivatives, the 5‐(4‐ethyl‐ and 4‐isopropylarylmethylthio)thiophene analogues, methyl‐2‐amino‐5‐((4‐ethylphenylthio)methyl)thiophene‐3‐carboxylate ( 13 m ) and methyl‐2‐amino‐5‐((4‐isopropylphenylthio)methyl)thiophene‐3‐carboxylate ( 13 n ), were more potent (IC50: 0.3–0.4 μM ) and selective (TS: 100–144) anti‐T‐lymphoma/leukemia agents than the prototype compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号