首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
Zeolites have been hydrothermally synthesized using Thai coal fly ash from Mae Moh Power Plant as silica and alumina sources. The synthesis conditions, i.e., SiO2/Al2O3 ratio, amount of water, amount of base, and aging temperature, were varied to prepare different topologies of zeolitic products. The zeolites attained were sodalite (SOD), gismondine (GIS), and cancrinite (CAN). The zeolites have been applied to adsorption of thiophene and benzothiophene in n-hexane solution. It was found that GIS with higher specific surface area and average pore volume had superior performance to other synthesized materials. Adsorption capacity of our developed zeolites was compared to those of commercial zeolites, i.e. NaY, HUSY, beta, and ZSM-5 obtained via the conventional synthesis methods. The results suggested a potential of zeolites derived from Mae Moh coal fly ash for removal of refractory sulfur compounds, such as benzothiophene.  相似文献   

2.
通过调控合成配方,以水热合成法制备一系列不同粒径及硅铝比的SSZ-13沸石,考察沸石孔道结构、酸性质与催化性能之间的关系。采用XRD、SEM、XRF、N2吸附-脱附以及27Al MAS NMR对沸石样品进行详细的表征,并评价其甲醇制烯烃反应(MTO)催化性能。结果表明,小晶粒SSZ-13沸石相对结晶度高、晶粒尺寸均一;在MTO中,小晶粒SSZ-13沸石的MTO催化寿命大幅高于大晶粒SSZ-13沸石;减小晶粒尺寸可改善分子扩散效率,在此基础上提高沸石的酸密度可增加其活性稳定性。  相似文献   

3.
The liquid-phase adsorption of n-pentane, n-hexane, n-heptane, and n-octane from natural gasoline on zeolite CaA and their catalytic isomerization has been investigated experimentally and theoretically with the aim of increasing the octane number of a low-octane gasoline. An integrated process flowsheet combining processes in an adsorber and in an isomerization reactor has been developed. The basic results are as follows: the ultimate activity of CaA with respect to n-pentane, n-hexane, n-heptane, and n-octane in the case of their simultaneous adsorption at 25.0°C is 4.2, 4.7, 5.1, and 6.3 kg/100 kg, respectively. Kinetic and outlet adsorption data are also presented. The maximum yield of C5, C6, C7, and C8 iso-paraffins is 62.0, 70.0, 66.0, and 47.0%, respectively. A mathematical model of the processes has been developed, and their parameters have been calculated. Calculated and experimental data are in satisfactory agreement.  相似文献   

4.
Adsorption of CO2 and CO at 25 °C has been conducted using commercially-available (Y, ZSM-5) and laboratory-synthesized (SSZ-13, SAPO-34) H-zeolites with different framework topologies and chemical compositions, and their textual and surface properties have been characterized by N2 sorption and NH3 adsorption techniques. All the zeolites were microporous, although ZSM-5 and SSZ-13 apparently showed a mesoporous sorption behavior due to the interparticle spaces. The zeolites had Si/Al values in the order of SSZ-13 (16.44) > ZSM-5 (16.08) ? Y (2.82) ? SAPO-34 (0.19). Regardless, high CO2 adsorption capacity was obtained for SSZ-13 and SAPO-34 with a CHA framework. The FAU zeolite Y with the highest micropore volume showed less CO2 adsorption than the CHA zeolites and the MFI-type ZSM-5 yielded the poorest performance. Probing acid sites in the H-form zeolites using NH3 disclosed that these all contain both weak and strong acid sites with significant dependence of their strengths and amounts on the topology. The acid strength of the weak acid sites in the CHA zeolites was the weakest, which might allow a stronger interaction with CO2. The H-zeolites gave CO2/CO selectivity factors that were in the range of 4.61–11.0, depending on the framework topology.  相似文献   

5.
Adsorption isotherms of carbon dioxide were measured on six high-silica zeolites TNU-9, IM-5, SSZ-74, ferrierite, ZSM-5 and ZSM-11 comprising three-dimensional 10-ring (8-ring for ferrierite) at 273, 293, 313 and 333 K. Based on the known temperature dependence of CO2 adsorption, isosteric heats of adsorption were calculated. The obtained adsorption capacities and isosteric adsorption heats related to the amount of CO2 adsorbed have provided detailed insight into the carbon dioxide interaction with zeolites of different framework topology. The zeolites TNU-9 and ferrierite are characterized by pronounced energetic heterogeneity whereas due to the location of Na+ cations in the same positions the isosteric adsorption heats of CO2 adsorption on IM-5, ZSM-5 and ZSM-11 zeolites are rather constant for molecular ratio CO2/Na+ < 1. As IM-5 zeolite has a maximum adsorption capacity, it appears to have optimum properties for carbon dioxide separation.  相似文献   

6.
The catalytic properties of 10-MR (membered ring) zeolites (ZSM-5, MCM-22, IM-5, ITQ-2, all with a similar Si/Al ratio of ca. 15) in hybrid Co/SiO2-zeolite catalysts for the direct conversion of syngas to mainly high-octane gasoline-range hydrocarbons has been studied under typical Fischer-Tropsch (FT) conditions: 250 °C, 2.0 MPa, and H2/CO = 2. Special emphasis has been given to the deactivation behavior and the characterization of the amount and nature of the carbonaceous deposits formed by a combination of techniques (elemental analysis, TGA (thermogravimetric analyses), GC–MS, and DR (diffuse reflectance) UV–vis spectroscopy). The presence of the medium-pore zeolite increases the gasoline yield by about 20–50%, depending on the particular zeolite, and enhances the formation of branched products with respect to the base Co/SiO2 catalyst, which is explained by the promotion of isomerization and cracking of long-chain (C13+) n-paraffins formed on the FT component. The initial zeolite activity is mostly determined by the surface acidity rather than by the total amount of Brønsted acid sites, pointing out to the existence of limitations for the diffusion of the long-chain n-paraffins through the 10-MR channels under FT conditions. Thus, ITQ-2 bearing the largest surface area presents the highest initial yield of branched gasoline-range products, followed by ZSM-5, IM-5, and MCM-22. All zeolites experience a loss of activity with TOS, particularly during the initial reaction stages. This deactivation is governed by the morphological and structural properties of the zeolite, which finally determine the amount and location of the coke species, and not by the acidity.  相似文献   

7.
Adsorption of n-hexane and n-nonane on mesoporous micelle-templated silicas (SBA-15 and MLV—multilayer vesicle) and on their carbon replicas (CMK-3 and OCM—onion-like carbonaceous material) was studied by means of quasi-equilibrated thermodesorption technique, utilising a standard TPD setup with a chromatographic detector. Analysis of n-hexane adsorption isobars, determined from the thermodesorption profiles, revealed substantial heterogeneity of the adsorption sites present in the carbonaceous materials. The pore size distributions calculated from the thermodesorption profiles of n-nonane for both siliceous and carbonaceous materials were in agreement with those obtained from the low-temperature nitrogen adsorption isotherms. They confirm an uniform structure of mesopores in SBA-15, CMK-3 and OCM as well as a more complex structure of mesopores in the MLV materials.  相似文献   

8.
The isosteric enthalpies of adsorption of n-hexane on ordered mesoporous silica of pore diameter between 3 and 10 nm have been measured. The heat of capillary condensation increases when mesopores are smaller. Capillary condensation of n-hexane in 3 nm mesopores is 20% more exothermic than the condensation on a flat liquid surface. The results are in good agreement with a model which takes into account the energetic contribution of the interface between the adsorbed layer and the vapour phase.  相似文献   

9.
Four kinds of ZSM-5 zeolites with different SiO2/Al2O3 ratios are alkali-treated in 0.2 M NaOH solution for 300 min at 363 K. Changes to the compositions, morphologies, pore sizes, and distributions of the zeolites are compared before and after alkali-treatment. The changes observed are largely influenced by the SiO2/Al2O3 ratios with which the zeolites are synthesized. A possible mechanism of desilication during alkali-treatment is proposed. The SiO2/Al2O3 ratio of zeolites is found to influence the yield of light olefins that use heavy oil as feedstock. Alkali-treated ZSM-5 zeolites produce higher yields of light olefins compared to either untreated zeolites or the industry catalyst CEP-1. It is believed that alkali-treatment introduces mesopores to the zeolites and improves their catalytic cracking ability. ZSM-5 zeolites with SiO2/Al2O3 ratios of 50 also present superior selectivity toward light olefins because of their optimized hierarchical pores.  相似文献   

10.
Adsorption isotherms for n-hexane and methanol in mordenite and ZSM5 in the temperature range from 323 K to 473 K were found to be of type 1. The adsorbate-adsorbent interaction (C1) and adsorbate-adsorbate interaction (C2) wee computed according to Bradley and Wilkins model, whereas the Rees and Williams model predicts the adsorption characteristics. Finally, the thermodynamic parameters such as ΔGo, ΔSo, ΔHo, K, K+ have been evaluated for the sorption of n-hexane in mordenite and ZSM5.  相似文献   

11.
The influence of the temperature on the protonation of acetonitrile by acidic zeolites was studied by infrared spectroscopy. Acidity at room or low temperature was not correlated with the protonation temperature, but the zeolitic structure played an important role. A new technique is presented for the study of the acidity of solids under reaction conditions. A good correlation was obtained in a series of various zeolites between the catalytic activity in the cracking of n-hexane and the protonation temperature of acetonitrile. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The effect of zeolite architecture and channel dimensionality on p-xylene conversion and selectivity to 1-isopropyl-2,5-dimethyl-benzene was investigated in p-xylene alkylation with isopropyl alcohol over novel zeolites SSZ-33 and SSZ-35. Catalytic behavior of these zeolites was compared with those of zeolites Beta, mordenite, ZSM-11 and ZSM-5. It was found that p-xylene conversion increases with increasing pore size and connectivity of the channel system of individual zeolites with the exception of SSZ-35, which possesses a system of one-dimensional 10-ring channels that periodically open into wide, shallow cavities circumscribed by 18-rings. SSZ-35 exhibited the highest conversion among all zeolites at the reaction temperature of 150 °C and also the highest selectivity to 1-isopropyl-2,5-dimethyl-benzene. Molecular modeling confirmed the dimensions of the 18-ring cages are optimal for the formation of this alkylation product.  相似文献   

13.
Shan  Yulong  Sun  Yu  Li  Yaobin  Shi  Xiaoyan  Shan  Wenpo  Yu  Yunbo  He  Hong 《Topics in Catalysis》2020,63(9-10):944-953

Pd-based small-pore zeolites with different framework structures (AEI, CHA and RTH) were synthesized by a facile incipient wetness impregnation method. The zeolites were utilized as low-temperature passive NOx adsorbers (PNA) for NOx storage before and after hydrothermal aging. It was found that 1 wt% Pd/AEI showed better PNA behavior than the 1 wt% Pd/CHA and Pd/RTH samples, regardless of hydrothermal aging at 750 and 800 ℃. The AEI zeolite has a three-dimensional but tortuous pore channel structure, which accelerated Pd dispersion at 750 ℃ but inhibited Pd aggregation at 800 ℃ when subjected to hydrothermal aging. Pd/CHA showed a slight increase in Pd dispersion at 750 ℃, but extensive Pd aggregation at 800 ℃ due to its straight and unhindered three-dimensional pore structure. The Pd species in Pd/RTH zeolite were prone to accumulation during hydrothermal aging due to the two-dimensional pore structure. Therefore, Pd/AEI can be utilized as an efficient and stable PNA after activation by mild hydrothermal aging treatment.

  相似文献   

14.
Zeolite/mesoporous molecular sieve composites (ZMC) are made using zeolites as silica-alumina source. XRD patterns of the ZMC show the peaks for both zeolite and mesoporous molecular sieve with hexagonal symmetry. Morphology of the ZMC is different from that of a physical mixture of the two components. Unlike Al-containing mesoporous molecular sieves, the ZMC shows a strong acidity like zeolites. The activity of cracking of n-hexane for ZMC was higher than that of the zeolite. These products are expected to be useful for catalysts and adsorbents for their acidity and pore size.  相似文献   

15.
The catalytic cracking and skeletal isomerization of n-hexenes on 80/100 mesh HY zeolite has been studied in the temperature range 350–405°C, and compared with results previously obtained on ZSM-5 zeolites. Species with less than three carbon atoms were not observed as primary cracking products, with traces of ethylene formed only as a secondary product. Although propylene and propane may be formed partially by monomolecular cracking of n-hexenes, the dominant cracking process is bimolecular. Dimerization, followed by disproportionation gives stable C3, C4 and C5 species, in addition to C9, C8 and C7 fragments. The probability of these larger fragments undergoing further cracking before desorption increases with temperature, but is significantly less than found on ZSM-5 zeolites. The main products of skeletal isomerization were monomethylpentenes, with those isomers which can originate from tertiary carbonium ions dominant. Dimethylbutenes were formed mainly as secondary products. The rate of the dimerization-cracking process in which two n-hexene species participate is ? six times slower than the reaction involving a monomethylpentene species and a linear hexene. The increase in the rate of the latter process with respect to the former is reduced on ZSM-5, and this can be attributed to the narrower pore size within this zeolite. In contrast to ZSM-5, there is significant formation of alicyclics, paraffins and aromatic species. The residual coke was found to be considerably poorer in hydrogen content than comparable material formed on ZSM-5.  相似文献   

16.
The effect of nickel addition to the sulfated ZrO2 catalysts for n-hexane isomerization was investigated. A series of catalysts with different nickel concentration (from 0 to 9.6 wt%) were synthesized by supporting nickel on sulfated zirconia by incipient wetness method. After a calcination procedure the catalysts were characterized by X-ray diffraction, nitrogen physisorption (BET method) and its acidic properties were determined by NH3 adsorption. (TPD) and FT-IR of pyridine adsorption. The n-hexane isomerization reaction was carried out in a fixed bed microreactor at 673 K under 345 kPa of total pressure. Results showed that nickel content between 1.5 and 4.5 wt% improved the catalytic activity and favored the formation 2,3-dimethylbutane, which is a highly desired product. X-ray diffraction results showed no evidence of any NiO phase at NiO concentration below 9.6 wt% suggesting a NiO phase highly dispersed on the surface of ZrO2–SO2? 4 with crystallite sizes lesser than 3nm. Catalytic activity and 2,3-dimethylbutane selectivity seems to be correlated with the NiO well dispersed phase rather than with their acidic properties.  相似文献   

17.

Abstract  

Catalytic performance of Pt impregnated parent and desilicated nano-crystalline zeolites, ZSM-5 and Beta for n-hexane isomerization was studied. Difference in channel systems of the zeolites and absence/presence of mesopores therein were found to be reflected in product distributions. ZSM-5 was desilicated by NaOH and zeolite Beta with tetramethylammonium hydroxide (TMAOH.) Desilication was found to afford comparable catalytic performance to that of the parent counterpart at reaction temperature lower by 25 °C. Observed product distributions could be substantiated with characterizations such as ammonia TPD, surface area determination and SEM. Desilicated zeolite Beta was seen to be less prone to coking as deduced from the TGA study. Location of Pt with reference to proton sites within the channels and that inside the pores viz a viz external surface also have been discussed briefly.  相似文献   

18.
The conversion of C3-C9 paraffins to small olefins over ZSM-5 zeolite is investigated. The small olefins are primary products and are usually converted into other more stable secondary products such as aromatics on the ZSM-5 zeolites. Thermally treated HZSM-5, K/HZSM-5 and Ba/HZSM-5 catalysts were developed and favourable oxidative conditions were introduced for the conversion process to maximize selective conversion of light paraffins to small olefins at the relatively low temperature of 873 K. The role of K and Ba is to minimize bimolecular hydrogen transfer reactions and enhance the dehydrogenation activity of the catalysts. Meanwhile, the oxygen in the gas phase is effective to improve the olefin selectivity and yield. C2-C4 olefin selectivities of 70.4 and 66.8% have been obtained for propane andn-hexane feed-stocks, respectively, at a temperature of 873 K.  相似文献   

19.
Adsorbents executing molecular sieving mechanisms for the efficient separation of n-hexane (C6) alkane isomers require delicate pore size control, but afford unsatisfactory single-component separations according to their branch degrees. Herein, we report a novel oxygenate-pillared microporous adsorbent, MoOFOUR-Co-tpb, ([Co(tpb)2MoO4], tpb = 1,2,4,5-tetra(pyridin-4-yl) benzene), with three gourd-shaped channels for dual pore-size sieving of C6 isomers. In particular, MoOFOUR-Co-tpb excludes 2,2-dimethylbutane, while 3-methylpentane (3MP) can enter one channel showing a high uptake of 82.6 mg g−1, contrasting to the n-hexane (nHEX) adsorption by two channels (136 mg g−1). This dual pore-size control strategy renders a record high equilibrium–kinetic combined selectivity for nHEX/3MP (30.2). Moreover, three- and five-component breakthrough experiments confirm the practical separation performances and cycling stability. Multiple theoretical simulations reveal the separation mechanism and adsorption sites.  相似文献   

20.
Copper-bearing zeolite catalysts are studied to develop a catalyst free of noble metals for obtaining high-octane components of motor fuels. The activity of the catalysts prepared on the basis of ZHM, ZHS-III-895, ZHS-III-889, and ZSM-5 zeolites with the different contents of copper is tested in the conversion of a model hydrocarbon (n-hexane). It is found that the reactions of isomerization and aromatization of n-hexane can lead to the formation of high-octane hydrocarbons in nonstandard conditions of conversion of n-alkanes: without feeding a hydrogen-bearing gas into the reaction medium at atmospheric pressure on copper-bearing high-silica zeolites, while an industrial process involving platinum catalysts is carried out under increased hydrogen pressure. The use of the recommended conditions for the conversion of hydrocarbons should lead to a reduction in the cost of final products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号