首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triple-negative breast cancer (TNBC) is unresponsive to typical hormonal treatments, causing it to be one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. The goal of this study was to assess cytotoxicity and apoptosis mechanisms of prenylated stilbenoids in TNBC cells. The prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3) are analogs of resveratrol (RES) produced in peanut upon biotic stress. The anticancer activity of A-1 and A-3 isolated from peanut hairy root cultures was determined in TNBC cell lines MDA-MB-231 and MDA-MB-436. After 24 h of treatment, A-1 exhibited higher cytotoxicity than A-3 and RES with approximately 11-fold and six-fold lower IC50, respectively, in MDA-MB-231 cells, and nine-fold and eight-fold lower IC50, respectively, in MDA-MB-436 cells. A-1 did not show significant cytotoxicity in the non-cancerous cell line MCF-10A. While A-1 blocked cell division in G2-M phases in the TNBC cells, it did not affect cell division in MCF-10A cells. Furthermore, A-1 induced caspase-dependent apoptosis through the intrinsic pathway by activating caspase-9 and PARP cleavage, and inhibiting survivin. In conclusion, A-1 merits further research as a potential lead molecule for the treatment of TNBC.  相似文献   

2.
Triple-negative breast cancer (TNBC) is one of the most common malignancies worldwide and shows maximum invasiveness and a high risk of metastasis. Recently, many natural compounds have been highlighted as a valuable source of new and less toxic drugs to enhance breast cancer therapy. Among them, S-adenosyl-L-methionine (AdoMet) has emerged as a promising anti-cancer agent. MicroRNA (miRNA or miR)-based gene therapy provides an interesting antitumor approach to integrated cancer therapy. In this study, we evaluated AdoMet-induced modulation of miRNA-34c and miRNA-449a expression in MDA-MB-231 and MDA-MB-468 TNBC cells. We demonstrated that AdoMet upregulates miR-34c and miR-449a expression in both cell lines. We found that the combination of AdoMet with miR-34c or miR-449a mimic strongly potentiated the pro-apoptotic effect of the sulfonium compound by a caspase-dependent mechanism. For the first time, by video time-lapse microscopy, we showed that AdoMet inhibited the in vitro migration of MDA-MB-231 and MDA-MB-468 cells and that the combination with miR-34c or miR-449a mimic strengthened the effect of the sulfonium compound through the modulation of β-catenin and Small Mother Against Decapentaplegic (SMAD) signaling pathways. Our results furnished the first evidence that AdoMet exerts its antitumor effects in TNBC cells through upregulating the expression of miR-34c and miR-449a.  相似文献   

3.
P21 activated kinases (or group I PAKs) are serine/threonine kinases whose expression is altered in prostate and breast cancers. PAK-1 activity is inhibited by the small molecule “Inhibitor targeting PAK-1 activation-3” (IPA-3), which has selectivity for PAK-1 but is metabolically unstable. Secretory Group IIA phospholipase A2 (sPLA2) expression correlates to increased metastasis and decreased survival in many cancers. We previously designed novel liposomal formulations targeting both PAK-1 and sPLA2, called Secretory Phospholipase Responsive liposomes or SPRL-IPA-3, and demonstrated their ability to alter prostate cancer growth. The efficacy of SPRL against other types of cancers is not well understood. We addressed this limitation by determining the ability of SPRL to induce cell death in a diverse panel of cells representing different stages of breast cancer, including the invasive but non-metastatic MCF-7 cells, and metastatic triple-negative breast cancer (TNBC) cells such as MDA-MB-231, MDA-MB-468, and MDA-MB-435. We investigated the role of sPLA2 in the disposition of these liposomes by comparing the efficacy of SPRL-IPA-3 to IPA-3 encapsulated in sterically stabilized liposomes (SSL-IPA-3), a formulation shown to be less sensitive to sPLA2. Both SSL-IPA-3 and SPRL-IPA-3 induced time- and dose-dependent decreases in MTT staining in all cell lines tested, but SPRL-IPA-3-induced effects in metastatic TNBC cell lines were superior over SSL-IPA-3. The reduction in MTT staining induced by SPRL-IPA-3 correlated to the expression of Group IIA sPLA2. sPLA2 expression also correlated to increased induction of apoptosis in TNBC cell lines by SPRL-IPA-3. These data suggest that SPRL-IPA-3 is selective for metastatic TNBC cells and that the efficacy of SPRL-IPA-3 is mediated, in part, by the expression of Group IIA sPLA2.  相似文献   

4.
Triple negative breast cancer (TNBC) is currently associated with a lack of treatment options. Arsenic derivatives have shown antitumoral activity both in vitro and in vivo; however, their mode of action is not completely understood. In this work we evaluate the response to arsenate of the double positive MCF-7 breast cancer cell line as well as of two different TNBC cell lines, Hs578T and MDA-MB-231. Multimodal experiments were conducted to this end, using functional assays and microarrays. Arsenate was found to induce cytoskeletal alteration, autophagy and apoptosis in TNBC cells, and moderate effects in MCF-7 cells. Gene expression analysis showed that the TNBC cell lines’ response to arsenate was more prominent in the G2M checkpoint, autophagy and apoptosis compared to the Human Mammary Epithelial Cells (HMEC) and MCF-7 cell lines. We confirmed the downregulation of anti-apoptotic genes (MCL1, BCL2, TGFβ1 and CCND1) by qRT-PCR, and on the protein level, for TGFβ2, by ELISA. Insight into the mode of action of arsenate in TNBC cell lines it is provided, and we concluded that TNBC and non-TNBC cell lines reacted differently to arsenate treatment in this particular experimental setup. We suggest the future research of arsenate as a treatment strategy against TNBC.  相似文献   

5.
According to the growth rate hypothesis (GRH), tumour cells have high inorganic phosphate (Pi) demands due to accelerated proliferation. Compared to healthy individuals, cancer patients present with a nearly 2.5-fold higher Pi serum concentration. In this work, we show that an increasing concentration of Pi had the opposite effect on Pi-transporters only in MDA-MB-231 when compared to other breast cell lines: MCF-7 or MCF10-A (non-tumoural breast cell line). Here, we show for the first time that high extracellular Pi concentration mediates ROS production in TNBC (MDA-MB-231). After a short-time exposure (1 h), Pi hyperpolarizes the mitochondrial membrane, increases mitochondrial ROS generation, impairs oxygen (O2) consumption and increases PKC activity. However, after 24 h Pi-exposure, the source of H2O2 seems to shift from mitochondria to an NADPH oxidase enzyme (NOX), through activation of PKC by H2O2. Exogenous-added H2O2 modulated Pi-transporters the same way as extracellular high Pi, which could be reversed by the addition of the antioxidant N-acetylcysteine (NAC). NAC was also able to abolish Pi-induced Epithelial-mesenchymal transition (EMT), migration and adhesion of MDA-MB-231. We believe that Pi transporters support part of the energy required for the metastatic processes stimulated by Pi and trigger Pi-induced H2O2 production as a signalling response to promote cell migration and adhesion.  相似文献   

6.
RuII-arene complexes provide a versatile scaffold for novel anticancer drugs. Seven new RuII-arene-thiocarboxylato dimers were synthesized and characterized. Three of the complexes ( 2 a , b and 5 ) showed promising antiproliferative activities in MDA-MB-231 (human invasive breast cancer) cells, and were further tested in a panel of fifteen cancerous and noncancerous cell lines. Complex 5 showed moderate but remarkably selective activity in MDA-MB-231 cells (IC50=39±4 μm Ru). Real-time proliferation studies showed that 5 induced apoptosis in MDA-MB-231 cells but had no effect in A549 (human lung cancer, epithelial) cells. By contrast, 2 a and b showed moderate antiproliferative activity, but no apoptosis, in either cell line. Selective cytotoxicity of 5 in aggressive, mesenchymal-like MDA-MB-231 cells over many common epithelial cancer cell lines (including noninvasive breast cancer MCF-7) makes it an attractive lead compound for the development of specifically antimetastatic Ru complexes with low systemic toxicity.  相似文献   

7.
Several lines of evidence suggest that altered adenosine deaminase (ADA) activity, especially its ADA2 iso-enzyme, is associated with malignant breast cancer (BC) development. Triple-negative breast cancer (TNBC) is currently the most challenging BC subtype due to its metastatic potential and recurrence. Herein, we analyzed the sources of ADA iso-enzymes in TNBC by investigating the effects of cell-to-cell interactions between TNBC cells, macrophages, lymphocytes, and endothelial cells. We also examined the potential relationship between ADA activity and cancer progression in TNBC patients. In vitro analyses demonstrated that the interactions of immune and endothelial cells with MDA-MB-231 triple negative BC cells modulated their extracellular adenosine metabolism pattern. However, they caused an increase in the ADA1 activity, and did not alter ADA2 activity in cancer cells. In turn, the co-culture of MDA-MB-231 cells with THP-1 monocyte/macrophages, Jurkat cells, and human lung microvascular endothelial cells (HULEC) caused the increase in ADA2 activity on THP-1 cells and ADA1 activity on Jurkat cells and HULEC. Clinical sample analysis revealed that TNBC patients had higher plasma ADA2 activities and lower ADA1/ADA2 ratio at advanced stages of cancer development than in the initial stages, while patients with hormone receptor positive, HER2 negative (HR+HER2-), and triple positive (HR+HER2+) breast cancers at the same stages showed opposite trends. TNBC patients also demonstrated positive associations between plasma ADA2 activity and pro-tumor M2 macrophage markers, as well as between ADA1 activity and endothelial dysfunction or inflammatory parameters. The analysis of TNBC patients, at 6 and 12 months following cancer treatment, did not showed significant changes in plasma ADA activities and macrophage polarization markers, which may be the cause of their therapeutic failure. We conclude that alterations in both ADA iso-enzymes can play a role in breast cancer development and progression by the modulation of extracellular adenosine-dependent pathways. Additionally, the changes in ADA2 activity that may contribute to the differentiation of macrophages into unfavorable pro-tumor M2 phenotype deserve special attention in TNBC.  相似文献   

8.
9.
Background: Triple Negative Breast Cancers (TNBC) are the most aggressive breast cancers and lead to poor prognoses. This is due to a high resistance to therapies, mainly because of the presence of Cancer Stem Cells (CSCs). Plasticity, a feature of CSCs, is acquired through the Epithelial to Mesenchymal Transition (EMT), a process that has been recently shown to be regulated by a key molecule, CD146. Of interest, CD146 is over-expressed in TNBC. Methods: The MDA-MB-231 TNBC cell line was used as a model to study the role of CD146 and its secreted soluble form (sCD146) in the development and dissemination of TNBC using in vitro and in vivo studies. Results: High expression of CD146 in a majority of MDA-MB-231 cells leads to an increased secretion of sCD146 that up-regulates the expression of EMT and CSC markers on the cells. These effects can be blocked with a specific anti-sCD146 antibody, M2J-1 mAb. M2J-1 mAb was able to reduce tumour development and dissemination in a model of cells xenografted in nude mice and an experimental model of metastasis, respectively, in part through its effects on CSC. Conclusion: We propose that M2J-1 mAb could be used as an additional therapeutic approach to fight TNBC.  相似文献   

10.
We evaluated the utility of optical redox imaging (ORI) to identify the therapeutic response of triple-negative breast cancers (TNBC) under various drug treatments. Cultured HCC1806 and MDA-MB-231 cells treated with FK866 (nicotinamide phosphoribosyltransferase (Nampt) inhibitor), FX11 (lactate dehydrogenase A inhibitor), paclitaxel, and their combinations were subjected to ORI, followed by imaging fluorescently labeled reactive oxygen species (ROS). Cell growth inhibition was measured by a cell viability assay. We found that both cell lines experienced significant NADH decrease and redox ratio (Fp/(NADH+Fp)) increase due to FK866 treatment; however, HCC1806 was much more responsive than MDA-MB-231. We further studied HCC1806 with the main findings: (i) nicotinamide riboside (NR) partially restored NADH in FK866-treated cells; (ii) FX11 induced an over 3-fold NADH increase in FK866 or FK866+NR pretreated cells; (iii) FK866 combined with paclitaxel caused synergistic increases in both Fp and the redox ratio; (iv) FK866 sensitized cells to paclitaxel treatments, which agrees with the redox changes detected by ORI; (v) Fp and the redox ratio positively correlated with cell growth inhibition; and (vi) Fp and NADH positively correlated with ROS level. Our study supports the utility of ORI for detecting the treatment responses of TNBC to Nampt inhibition and the sensitization effects on standard chemotherapeutics.  相似文献   

11.
Triple-negative breast cancer (TNBC) tends to metastasize to the brain, a step that worsens the patient’s prognosis. The specific hallmarks that determine successful metastasis are motility and invasion, microenvironment modulation, plasticity, and colonization. Zinc, an essential trace element, has been shown to be involved in all of these processes. In this work, we focus our attention on the potential role of zinc during TNBC metastasis. We used MDA-MB-BrM2 (BrM2) cells, a brain metastasis model derived from the parental TNBC cell line MDA-MB-231. Our studies show that BrM2 cells had double the zinc content of MDA-MB-231 cells. Moreover, exploring different metastatic hallmarks, we found that the zinc concentration is especially important in the microenvironment modulation of brain metastatic cells, enhancing the expression of SerpinB2. Furthermore, we show that zinc promotes the tumorigenic capacity of breast cancer stem cells. In addition, by causing a disturbance in MDA-MB-231 zinc homeostasis by overexpressing the Zip4 transporter, we were able to increase tumorigenicity. Nevertheless, this strategy did not completely recapitulate the BrM2 metastatic phenotype. Altogether, our work suggests that zinc plays an important role in the transformative steps that tumoral cells take to acquire tumorigenic potential and niche specificity.  相似文献   

12.
The FOXM1 protein controls the expression of essential genes related to cancer cell cycle progression, metastasis, and chemoresistance. We hypothesize that FOXM1 inhibitors could represent a novel approach to develop 18F-based radiotracers for Positron Emission Tomography (PET). Therefore, in this report we describe the first attempt to use 18F-labeled FOXM1 inhibitors to detect triple-negative breast cancer (TNBC). Briefly, we replaced the original amide group in the parent drug FDI-6 for a ketone group in the novel AF-FDI molecule, to carry out an aromatic nucleophilic (18F)-fluorination. AF-FDI dissociated the FOXM1-DNA complex, decreased FOXM1 levels, and inhibited cell proliferation in a TNBC cell line (MDA-MB-231). [18F]AF-FDI was internalized in MDA-MB-231 cells. Cell uptake inhibition experiments showed that AF-FDI and FDI-6 significantly decreased the maximum uptake of [18F]AF-FDI, suggesting specificity towards FOXM1. [18F]AF-FDI reached a tumor uptake of SUV=0.31 in MDA-MB-231 tumor-bearing mice and was metabolically stable 60 min post-injection. These results provide preliminary evidence supporting the potential role of FOXM1 to develop PET radiotracers.  相似文献   

13.
14.
Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations.  相似文献   

15.
Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.  相似文献   

16.
The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.  相似文献   

17.
18.
A new series of hybrid compounds with tropinone and thiazole rings in the structure was designed and synthesized as potential anticancer agents. They were tested against human multiple myeloma (RPMI 8226), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), and mouse skin melanoma (B16-F10) cell lines. Toxicity was tested on human normal skin fibroblasts (HSF) and normal colon fibroblasts (CCD-18Co). The growth inhibition mechanism of the most active derivative was analyzed through investigation of its effect on the distribution of cell cycle phases and ability to induce apoptosis and necrosis in RPMI 8226 and A549 cancer cells. The tyrosinase inhibitory potential was assessed, followed by molecular docking studies. Compounds 3a–3h show high anticancer activity against MDA-MB-231 and B16-F10 cell lines with IC50 values of 1.51–3.03 µM. Moreover, the cytotoxic activity of the investigated compounds against HSF and CCD-18Co cells was 8–70 times lower than against the cancer cells or no toxicity was shown in our tests, with derivative 3a being particularly successful. The mechanism of action of compound 3a in RPMI 8226 cell was shown to be through induction of cell death through apoptosis. The derivatives show ability to inhibit the tyrosinase activity with a mixed mechanism of inhibition. The final molecular docking results showed for IC50 distinct correlation with experiment.  相似文献   

19.
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号