首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1H,15N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.  相似文献   

2.
The development of small molecules that inhibit protein–protein interactions continues to be a challenge in chemical biology and drug discovery. Herein we report the development of indole‐based fragments that bind in a shallow surface pocket of a humanised surrogate of RAD51. RAD51 is an ATP‐dependent recombinase that plays a key role in the repair of double‐strand DNA breaks. It both self‐associates, forming filament structures with DNA, and interacts with the BRCA2 protein through a common “FxxA” tetrapeptide motif. We elaborated previously identified fragment hits that target the FxxA motif site and developed small‐molecule inhibitors that are approximately 500‐fold more potent than the initial fragments. The lead compounds were shown to compete with the BRCA2‐derived Ac‐FHTA‐NH2 peptide and the self‐association peptide of RAD51, but they had no effect on ATP binding. This study is the first reported elaboration of small‐molecular‐weight fragments against this challenging target.  相似文献   

3.
The ability to identify inhibitors of protein–protein interactions represents a major challenge in modern drug discovery and in the development of tools for chemical biology. In recent years, fragment‐based approaches have emerged as a new methodology in drug discovery; however, few examples of small molecules that are active against chemotherapeutic targets have been published. Herein, we describe the fragment‐based approach of targeting the interaction between the tumour suppressor BRCA2 and the recombination enzyme RAD51; it makes use of a screening pipeline of biophysical techniques that we expect to be more generally applicable to similar targets. Disruption of this interaction in vivo is hypothesised to give rise to cellular hypersensitivity to radiation and genotoxic drugs. We have used protein engineering to create a monomeric form of RAD51 by humanising a thermostable archaeal orthologue, RadA, and used this protein for fragment screening. The initial fragment hits were thoroughly validated biophysically by isothermal titration calorimetry (ITC) and NMR techniques and observed by X‐ray crystallography to bind in a shallow surface pocket that is occupied in the native complex by the side chain of a phenylalanine from the conserved FxxA interaction motif found in BRCA2. This represents the first report of fragments or any small molecule binding at this protein–protein interaction site.  相似文献   

4.
Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). Nitrogen-containing bisphosphonates, a current treatment for bone diseases, have been shown to block the growth of the T. brucei parasites by inhibiting farnesyl pyrophosphate synthase (FPPS); however, due to their poor pharmacokinetic properties, they are not well suited for antiparasitic therapy. Recently, an allosteric binding pocket was discovered on human FPPS, but its existence on trypanosomal FPPS was unclear. We applied NMR and X-ray fragment screening to T. brucei FPPS and report herein on four fragments bound to this previously unknown allosteric site. Surprisingly, non-bisphosphonate active-site binders were also identified. Moreover, fragment screening revealed a number of additional binding sites. In an early structure–activity relationship (SAR) study, an analogue of an active-site binder was unexpectedly shown to bind to the allosteric site. Overlaying identified fragment binders of a parallel T. cruzi FPPS fragment screen with the T. brucei FPPS structure, and medicinal chemistry optimisation based on two binders revealed another example of fragment “pocket hopping”. The discovery of binders with new chemotypes sets the framework for developing advanced compounds with pharmacokinetic properties suitable for the treatment of parasitic infections by inhibition of FPPS in T. brucei parasites.  相似文献   

5.
Despite the recognized importance of membrane proteins as pharmaceutical targets, the reliable identification of fragment hits that are able to bind these proteins is still a major challenge. Among different 19F NMR spectroscopic methods, n‐fluorine atoms for biochemical screening (n‐FABS) is a highly sensitive technique that has been used efficiently for fragment screening, but its application for membrane enzymes has not been reported yet. Herein, we present the first successful application of n‐FABS to the discovery of novel fragment hits, targeting the membrane‐bound enzyme fatty acid amide hydrolase (FAAH), using a library of fluorinated fragments generated based on the different local environment of fluorine concept. The use of the recombinant fusion protein MBP‐FAAH and the design of compound 11 as a suitable novel fluorinated substrate analogue allowed n‐FABS screening to be efficiently performed using a very small amount of enzyme. Notably, we have identified 19 novel fragment hits that inhibit FAAH with a median effective concentration (IC50) in the low mM –μM range. To the best of our knowledge, these results represent the first application of a 19F NMR fragment‐based functional assay to a membrane protein.  相似文献   

6.
7.
The cell surface receptor CD44 is a glycoprotein belonging to the hyaluronan‐binding proteins, termed hyaladherins. CD44 is expressed in a wide variety of isoforms in many cells and, in particular, is present on the surface of malignant cells where it is involved in the onset and progression of cancer. In a first attempt to identify novel CD44‐binding agents, we first characterized, with NMR spectroscopic techniques, several agents that were reported to bind to human CD44 (hCD44). To our surprise, however, none of these putative CD44‐binding agents, including a peptide that is in phase 2 clinical trials (A6 peptide) and a recently reported fragment hit, were found to interact significantly with recombinant hCD44(21–178). Nonetheless, we further report that a fragment‐screening campaign, with solution NMR spectroscopy as the detection method, identified a viable fragment hit that bound in a potentially functional pocket on the surface of CD44, opposite to the hyaluronic acid binding site. We hypothesize that this pocket could be indirectly associated with the cellular and in vivo activity of the A6 peptide, which would provide a novel framework for the possible development of therapeutically viable CD44 antagonists.  相似文献   

8.
9.
The RNA binding motif protein 5 (RBM5), also known as Luca15 or H37, is a component of prespliceosomal complexes that regulates the alternative splicing of several mRNAs, such as Fas and caspase-2. The RBM5 gene is located at the 2p21.3 chromosomal region, which is strongly associated with lung cancer and many other cancers. Both increased and decreased levels of RBM5 can play a role in tumor progression. In particular, downregulation of rbm5 is involved in lung cancer and other cancers upon Ras activation, and, also, represents a molecular signature associated with metastasis in various solid tumors. On the other hand, upregulation of RBM5 occurs in breast and ovarian cancer. Moreover, RBM5 was also found to be involved in the early stage of the HIV-1 viral cycle, representing a potential target for the treatment of the HIV-1 infection. While the molecular basis for RNA recognition and ubiquitin interaction has been structurally characterized, small molecules binding this zinc finger (ZF) domain that might contribute to characterizing their activity and to the development of potential therapeutic agents have not yet been reported. Using an NMR screening of a fragment library we identified several binders and the complex of the most promising one, compound 1, with the RBM5 ZF1 was structurally characterized in solution. Interestingly, the binding mechanism reveals that 1 occupies the RNA binding pocket and is therefore able to compete with the RNA to bind RBM5 RanBP2-type ZF domain, as indicated by NMR studies.  相似文献   

10.
An academic chemical screening approach was developed by using 2D protein‐detected NMR, and a 352‐chemical fragment library was screened against three different protein targets. The approach was optimized against two protein targets with known ligands: CXCL12 and BRD4. Principal component analysis reliably identified compounds that induced nonspecific NMR crosspeak broadening but did not unambiguously identify ligands with specific affinity (hits). For improved hit detection, a novel scoring metric—difference intensity analysis (DIA)—was devised that sums all positive and negative intensities from 2D difference spectra. Applying DIA quickly discriminated potential ligands from compounds inducing nonspecific NMR crosspeak broadening and other nonspecific effects. Subsequent NMR titrations validated chemotypes important for binding to CXCL12 and BRD4. A novel target, mitochondrial fission protein Fis1, was screened, and six hits were identified by using DIA. Screening these diverse protein targets identified quinones and catechols that induced nonspecific NMR crosspeak broadening, hampering NMR analyses, but are currently not computationally identified as pan‐assay interference compounds. The results established a streamlined screening workflow that can easily be scaled and adapted as part of a larger screening pipeline to identify fragment hits and assess relative binding affinities in the range of 0.3–1.6 mm . DIA could prove useful in library screening and other applications in which NMR chemical shift perturbations are measured.  相似文献   

11.
Aberrant WNT pathway activation, leading to nuclear accumulation of β-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of β-catenin and subsequent nuclear translocation. Restoring cellular degradation of β-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to β-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging β-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein–protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards β-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.  相似文献   

12.
The S100 protein family is a highly conserved group of Ca(2+)-binding proteins that belong to the EF-hand type and are considered potential drug targets. In the present study we focused our attention on two members of the family: S100A13 and S100B; the former is involved in the nonclassical protein release of two proangiogenic polypeptides FGF-1 and IL-1alpha that are involved in inflammatory processes, whereas S100B is known to interact with the C-terminal domain of the intracellular tumor suppressor p53 and promote cancer development. We screened, using waterLOGSY NMR experiments, 430 molecules of a generic fragment library and we identified different hits for each protein. The subset of fragments interacting with S100B has very few members in common with the subset interacting with S100A13. From the (15)N-HSQC NMR spectra of the proteins in the presence of those hits the chemical shift differences Deltadelta(HN) were calculated, and the main regions of surface interaction were identified. A relatively large variety of interaction regions for various ligands were identified for the two proteins, including known or suggested protein-protein interaction sites.  相似文献   

13.
14.
Apical membrane antigen 1 (AMA1) is essential for the invasion of host cells by malaria parasites. Several small-molecule ligands have been shown to bind to a conserved hydrophobic cleft in Plasmodium falciparum AMA1. However, a lack of detailed structural information on the binding pose of these molecules has hindered their further optimisation as inhibitors. We have developed a spin-labelled peptide based on RON2, the native binding partner of AMA1, to probe the binding sites of compounds on PfAMA1. The crystal structure of this peptide bound to PfAMA1 shows that it binds at one end of the hydrophobic groove, leaving much of the binding site unoccupied and allowing fragment hits to bind without interference. In paramagnetic relaxation enhancement (PRE)-based NMR screening, the 1H relaxation rates of compounds binding close to the probe were enhanced. Compounds experienced different degrees of PRE as a result of their different orientations relative to the spin label while bound to AMA1. Thus, PRE-derived distance constraints can be used to identify binding sites and guide further hit optimisation.  相似文献   

15.
16.
SMAD4, a key regulator of transforming growth factor-β (TGF-β) signaling, plays a major role in cell growth, migration, and apoptosis. In particular, TGF-β/SMAD induces growth arrest, and SMAD4 induces the expression of target genes such as p21WAF1 and p15INK4b through its interaction with several cofactors. Thus, inactivating mutations or the homozygous deletion of SMAD4 could be related to tumorigenesis or malignancy progression. However, in some cancer types, SMAD4 is neither mutated nor deleted. In the current study, we demonstrate that TGF-β signaling with a preserved SMAD4 function can contribute to cancer through associations with negative pathway regulators. We found that nuclear respiratory factor-1 (NRF1) is a novel interaction SMAD4 partner that inhibits TGF-β/SMAD4-induced p15INK4b mRNA expression by binding to SMAD4. Furthermore, we confirmed that NRF1 directly binds to the core region of the SMAD4 promoter, thereby decreasing SMAD4 mRNA expression. On the whole, our data suggest that NRF1 is a negative regulator of SMAD4 and can interfere with TGF-β/SMAD-induced tumor suppression. Our findings provide a novel perception into the molecular basis of TGF-β/SMAD4-signaling suppression in tumorigenesis.  相似文献   

17.
Crystallography provides structural information crucial for fragment optimization, however several criteria must be met to screen directly on protein crystals as soakable, well-diffracting specimen must be available. We screened a 96-fragment library against the tRNA-modifying enzyme TGT using crystallography. Eight hits, some with surprising binding poses, were detected. However, the amount of data collection, reduction and refinement is assumed substantial. Therefore, having a reliable cascade of fast and cost-efficient methods available for pre-screening before embarking to elaborate crystallographic screening appears beneficial. This allows filtering of compounds to the most promising hits, available to rapidly progress from hit-to-lead. But how to ensure that this workflow is reliable? To answer this question, we also applied SPR and NMR to the same screening sample to study whether identical hits are retrieved. Upon hit-list comparisons, crystallography shows with NMR and SPR, only one overlapping hit and all three methods shared no common hits. This questions a cascade-type screening protocol at least in the current example. Compared to crystallography, SPR and NMR detected higher percentages of non-active-site binders suggesting the importance of running reporter ligand-based competitive screens in SPR and NMR, a requirement not needed in crystallography. Although not specific, NMR proved a more sensitive method relative to SPR and crystallography, as it picked up the highest numbers of binders.  相似文献   

18.
The nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also called Nfe2l2) and its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (KEAP1), are major regulators of redox homeostasis controlling a multiple of genes for detoxification and cytoprotective enzymes. The NRF2/KEAP1 pathway is a fundamental signaling cascade responsible for the resistance of metabolic, oxidative stress, inflammation, and anticancer effects. Interestingly, a recent accumulation of evidence has indicated that NRF2 exhibits an aberrant activation in cancer. Evidence has shown that the NRF2/KEAP1 signaling pathway is associated with the proliferation of cancer cells and tumerigenesis through metabolic reprogramming. In this review, we provide an overview of the regulatory molecular mechanism of the NRF2/KEAP1 pathway against metabolic reprogramming in cancer, suggesting that the regulation of NRF2/KEAP1 axis might approach as a novel therapeutic strategy for cancers.  相似文献   

19.
20.
The retinoic‐acid‐related orphan receptor γ t (RORγt), as a master regulator of Th17 cell pathology, has become an attractive target for small‐molecule drug discovery for the treatment of Th17‐cell‐related autoimmune diseases. A crystallographic fragment screening was carried out for RORγt using the ligand binding domain. An overall hit rate of 5.5 % was obtained by screening 384 compounds in 96 cocktails. Five distinct hotspots were identified, and four regions of anchoring polar interactions were observed. In addition, significant induced fit was found for the binding of several fragments. Strikingly, a simultaneous binding of three fragments was revealed which presents interesting features including π–π stacking, multiple hydrogen bonds to the protein, and significant induced fit. Overall, the results offer a complete mapping of the ligand binding pocket and provide valuable inspiration in structure‐based design for RORγt lead generation and optimization. The crystallographic screening also resulted in fragment hits that bind at the surface away from the ligand binding pocket. This surface site is near the plausible dimer interface by analogy with other nuclear receptor systems, which can provide initial hints to explore alternative ways to modulate RORγt through protein–protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号