首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of synthetic functionalized arylvinyl-1,2,4-trioxanes ( 8 a – p ) has been prepared and assessed for their in vitro antiplasmodial activity against the chloroquine-resistant Pf INDO strain of Plasmodium falciparum by using a SYBR green-I fluorescence assay. Compounds 8 g (IC50=0.051 μM; SI=589.41) and 8 m (IC50=0.059 μM; SI=55.93) showed 11-fold and >9-fold more potent antiplasmodial activity, respectively, as compared to chloroquine (IC50=0.546 μM; SI=36.63). Different in silico docking studies performed on many target proteins revealed that the most active arylvinyl-1,2,4-trioxanes ( 8 g and 8 m ) showed dihydrofolate reductase (DHFR) binding affinities on a par with those of chloroquine and artesunate. The in vitro cytotoxic potentials of 8 a – p were also evaluated against human lung (A549) and liver (HepG2) cancer cell lines along with immortalized normal lung (BEAS-2B) and liver (LO2) cell lines. Following screening, five derivatives viz. 8 a , 8 h , 8 l , 8 m and 8 o (IC50=1.65–31.7 μM; SI=1.08–10.96) were found to show potent cytotoxic activity against (A549) lung cancer cell lines, with selectivity superior to that of the reference compounds artemisinin (IC50=100 μM), chloroquine (IC50=100 μM) and artesunic acid (IC50=9.85 μM; SI=0.76). In fact, the most active 4-naphthyl-substituted analogue 8 l (IC50=1.65 μM; SI >10) exhibited >60 times more cytotoxicity than the standard reference, artemisinin, against A549 lung cancer cell lines. In silico docking studies of the most active anticancer compounds, 8 l and 8 m , against EGFR were found to validate the wet lab results. In summary, a new series of functionalized aryl-vinyl-1,2,4-trioxanes ( 8 a – p ) has been shown to display dual potency as promising antiplasmodial and anticancer agents.  相似文献   

2.
Although the role of Bcl‐2 phosphorylation is still under debate, it has been identified in a resistance mechanism to BH3 mimetics, for example ABT‐737 and S1 . We identified an S1 analogue, S1‐16 , as a small‐molecule inhibitor of pBcl‐2. S1‐16 efficiently kills EEE‐Bcl‐2 (a T69E, S70E, and S87E mutant mimicking phosphorylation)‐expressing HL‐60 cells and high endogenously expressing pBcl‐2 cells, by disrupting EEE‐Bcl‐2 or native pBcl‐2 interactions with Bax and Bak, followed by apoptosis. In vitro binding assays showed that S1‐16 binds to the BH3 binding groove of EEE‐Bcl‐2 (Kd=0.38 μM by ITC; IC50=0.16 μM by ELISA), as well as nonphosphorylated Bcl‐2 (npBcl‐2; Kd=0.38 μM ; IC50=0.12 μM ). However, ABT‐737 and S1 had much weaker affinities to EEE‐Bcl‐2 (IC50=1.43 and >10 μM , respectively), compared with npBcl‐2 (IC50=0.011 and 0.74 μM , respectively). The allosteric effect on BH3 binding groove by Bcl‐2 phosphorylation in the loop region was illustrated for the first time.  相似文献   

3.
An integrated multidisciplinary approach that combined structure‐based drug design, multicomponent reaction synthetic approaches and functional characterization in enzymatic and cell assays led to the discovery of new kinesin spindle protein (KSP) inhibitors with antiproliferative activity. A focused library of new benzimidazoles obtained by a Ugi+Boc removal/cyclization reaction sequence generated low‐micromolar‐range KSP inhibitors as promising anticancer prototypes. The design and functional studies of the new chemotypes were assessed by computational modeling and molecular biology techniques. The most active compounds— 20 (IC50=1.49 μM , EC50=3.63 μM ) and 22 (IC50=1.37 μM , EC50=6.90 μM )—were synthesized with high efficiency by taking advantage of the multicomponent reactions.  相似文献   

4.
In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50=0.78±0.01 μM), HT29 (IC50=0.92±0.15 μM) and K562 (IC50=47.25±1.24 μM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1/G0 phase and decreased cell population in G2/M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg−1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.  相似文献   

5.
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2–5.6-fold) and suppressed cyclin D expression (0.8–0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.  相似文献   

6.
We report here a general approach to using poly(amidoamine) (PAMAM) dendrimers modified with polyethylene glycol (PEG) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for in vitro cancer therapy applications. In this approach, PEGylated PAMAM dendrimers were synthesized by conjugating monomethoxypolyethylene glycol with carboxylic acid end group (mPEG‐COOH) onto the surface of generation 5 amine‐terminated PAMAM dendrimer (G5.NH2), followed by acetylation of the remaining dendrimer terminal amines. By varying the molar ratios of mPEG‐COOH/G5.NH2, G5.NHAc‐mPEGn (n = 5, 10, 20, and 40, respectively) with different PEGylation degrees were obtained. We show that the PEGylated dendrimers are able to encapsulate DOX with approximately similar loading capacity regardless of the PEGylation degree. The formed dendrimer/DOX complexes are water soluble and stable. In vitro release studies show that DOX complexed with the PEGylated dendrimers can be released in a sustained manner. Further cell viability assay in conjunction with cell morphology observation demonstrates that the G5.NHAc‐mPEGn/DOX complexes display effective antitumor activity, and the DOX molecules encapsulated within complexes can be internalized into the cell nucleus, similar to the free DOX drug. Findings from this study suggest that PEGylated dendrimers may be used as a general drug carrier to encapsulate various hydrophobic drugs for different therapeutic applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40358.  相似文献   

7.
The natural product piperlonguminine (PL) has been shown to exert potential anticancer activity against several types of cancer via elevation of reactive oxidative species (ROS). However, the application of PL has been limited due to its poor water solubility and moderate activity. To improve PL's potency, we designed and synthesized a series of 17 novel phenylmethylenecyclohexenone derivatives and evaluated their pharmacological properties. Most of them exerted antiproliferative activities against four cancer cell lines with IC50 values lower than PL. Among these, compound 10 e not only showed good water solubility and exerted the most potent antiproliferative activity against HGC27 cells (IC50=0.76 μM), which was 10-fold lower than PL (IC50=7.53 μM), but also exhibited lower cytotoxicity in human normal gastric epithelial cells GES-1 compared with HGC27 cells. Mechanistically, compound 10 e inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, and diminished mitochondrial transmembrane potential (MTP) in HGC27 cells. Furthermore, 10 e also induced G2/M cell-cycle arrest, and triggered cancer cell apoptosis through the regulation of apoptotic proteins. Finally, 10 e promoted DNA damage in HGC27 cells via the activation of the H2AX(S139ph) and p53 signaling. In conclusion, 10 e , with prominent tumor selectivity and water solubility, could be a promising candidate for the treatment of cancer and, as such, warrants further investigation.  相似文献   

8.
A series of novel 2‐amino‐3,4,5‐trimethoxybenzophenone analogues exhibited excellent activity as tubulin polymerization inhibitors by targeting the colchicine binding site of microtubules. The lead compound 17 exhibited an IC50 value of 1.6 μM , similar to that of combretastatin A‐4 (IC50=1.9 μM ). It also displayed remarkable anti‐proliferative activity, with IC50 values ranging from 7–16 nM against a variety of human cancer cell lines and one MDR(+) cancer cell line. SAR information indicated that the introduction of an amino group at the C2 position of benzophenone ring A and the C3’ position of benzophenone ring B play important roles in maximizing activity.  相似文献   

9.
The Wnt/β-catenin pathway is often found deregulated in cancer. The aberrant accumulation of β-catenin in the cell nucleus results in the development of various malignancies. Specific drugs against this signaling pathway for clinical treatments have not been approved yet. Herein we report inhibitors of β-catenin signaling of potential therapeutic value as anticancer agents. Ethyl 4-((4-(trifluoromethyl)phenyl)sulfonamido)benzoate (compound 14 ) inhibits the effect on Wnt reporter with an IC50 value of 7.0 μM, significantly reduces c-MYC levels, inhibits HCT116 colon cancer cell growth (IC50 20.2 μM), does not violate Lipinski and Veber rules, and shows predicted Caco-2 and MDCK cell permeability Papp>500 nm s−1. Compound 14 seems to have potential for the development of new anticancer therapies.  相似文献   

10.
In the search for new and effective treatments of breast and prostate cancer, a series of hybrid compounds based on tamoxifen, estrogens, and artemisinin were successfully synthesized and analyzed for their in vitro activities against human prostate (PC-3) and breast cancer (MCF-7) cell lines. Most of the hybrid compounds exhibit a strong anticancer activity against both cancer cell lines – for example, EC50 (PC-3) down to 1.07 μM, and EC50 (MCF-7) down to 2.08 μM – thus showing higher activities than their parent compounds 4-hydroxytamoxifen (afimoxifene, 7 ; EC50=75.1 (PC-3) and 19.3 μM (MCF-7)), dihydroartemisinin ( 2 ; EC50=263.6 (PC-3) and 49.3 μM (MCF-7)), and artesunic acid ( 3 ; EC50=195.1 (PC-3) and 32.0 μM (MCF-7)). The most potent compounds were the estrogen-artemisinin hybrids 27 and 28 (EC50=1.18 and 1.07 μM, respectively) against prostate cancer, and hybrid 23 (EC50=2.08 μM) against breast cancer. These findings demonstrate the high potential of hybridization of artemisinin and estrogens to further improve their anticancer activities and to produce synergistic effects between linked pharmacophores.  相似文献   

11.
More than 50 new inhibitors of the oncogenic Stat3 protein were identified through a structure–activity relationship (SAR) study based on the previously identified inhibitor S3I‐201 (IC50=86 μM , Ki>300 μM ). A key structural feature of these inhibitors is a salicylic acid moiety, which, by acting as a phosphotyrosine mimetic, is believed to facilitate binding to the Stat3 SH2 domain. Several of the analogues exhibit higher potency than the lead compound in inhibiting Stat3 DNA binding activity, with an in vitro IC50 range of 18.7–51.9 μM , and disruption of Stat3–pTyr peptide interactions with Ki values in the 15.5–41 μM range. One agent in particular exhibited potent inhibition of Stat3 phosphorylation in both breast and multiple myeloma tumor cells, suppressed the expression of Stat3 target genes, and induced antitumor effects in tumor cells harboring activated Stat3 protein.  相似文献   

12.
Statins are commonly prescribed antilipidemic and anticholesterol class of drugs. In addition to their major role, they have been found to have anticancer effects on in vitro, animal and clinical studies. The aim of this study was to investigate the effects of six different statins (rosuvastatin, pravastatin, simvastatin, lovastatin, fluvastatin, and atorvastatin) on A549 cancer cells lipids by Fourier transform infrared (FTIR) spectroscopy. Proliferation tests were carried out to detect the half-maximal inhibitory concentrations (IC50) of each statin on A549 cells. The IC50 values were 50 μM for simvastatin, 150 μM for atorvastatin and pravastatin, and 170 μM for fluvastatin, 200 μM for rosuvastatin and lovastatin on A549 cells. No correlation was found between the antiproliferative effects of the statins and lipid-lowering effect. The cells were treated with IC5, IC10, and IC50 values of each statins concentration and lipid extracts were compared using FTIR spectroscopy. The results indicated that different statins had different effects on the lipid content of A549 cells. The FTIR spectra of the lipid exctracts of statin-treated A549 cells indicated that the value of hydrocarbon chain length, unsaturation index, oxidative stress level, and phospholipid containing lipids increased except for rosuvastatin-treated A549 cells. In addition, rosuvastatin significantly lowered cholesterol ester levels. In conclusion, the contrasting effects of rosuvastatin should be further investigated.  相似文献   

13.
Grb7 is a non‐catalytic protein, the overexpression of which has been associated with the proliferative and migratory potentials of cancer cells. Virtual screening strategies involving a shape‐based similarity search, molecular docking, and 2D‐similarity searches complemented by experimental binding studies (Thermofluor and isothermal titration calorimetry) resulted in the identification of nine novel phenylbenzamide‐based antagonists of the Grb7 SH2 domain. Moderate binding affinities were observed, ranging from Kd=32.3 μM for lead phenylbenzamide NSC 104999 ( 1 ) to Kd=1.1 μM for a structurally related compound, NSC 57148 ( 2 ). Deconvolution of the affinity data into its components revealed differences in lead binding, from being entropy based (lead 1 ) to enthalpically driven (NSC 100874 ( 3 ), NSC 55158 ( 4 ), and compound 2 ). Finally, the lead compound 1 was found to decrease the growth of MDA‐MB‐468 breast cancer cells, with an IC50 value of 39.9 μM . It is expected that these structures will serve as novel leads in the development of Grb7‐based anticancer therapeutics.  相似文献   

14.
Chagas disease and malaria are two neglected tropical diseases (NTDs) that prevail in tropical and subtropical regions in 149 countries. Chagas is also present in Europe, the US and Australia due to immigration of asymptomatic infected individuals. In the absence of an effective vaccine, the control of both diseases relies on chemotherapy. However, the emergence of parasite drug resistance is rendering currently available drugs obsolete. Hence, it is crucial to develop new molecules. Phthalimides, thiosemicarbazones, and 1,3-thiazoles have been used as scaffolds to obtain antiplasmodial and anti-Trypanosoma cruzi agents. Herein we present the synthesis of 24 phthalimido-thiosemicarbazones ( 3 a – x ) and 14 phthalimido-thiazoles ( 4 a – n ) and the corresponding biological activity against T. cruzi, Plasmodium falciparum, and cytotoxicity against mammalian cell lines. Some of these compounds showed potent inhibition of T. cruzi at low cytotoxic concentrations in RAW 264.7 cells. The most active compounds, 3 t (IC50=3.60 μM), 3 h (IC50=3.75 μM), and 4 j (IC50=4.48 μM), were more active than the control drug benznidazole (IC50=14.6 μM). Overall, the phthalimido-thiosemicarbazone derivatives were more potent than phthalimido-thiazole derivatives against T. cruzi. Flow cytometry assay data showed that compound 4 j was able to induce necrosis and apoptosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with compounds 3 h , 3 t , and 4 j at IC50 concentrations promoted changes in the shape, flagella, and surface of the parasite body similar to those observed in benznidazole-treated cells. The compounds with the highest antimalarial activity were the phthalimido-thiazoles 4 l (IC50=1.2 μM), 4 m (IC50=1.7 μM), and 4 n (IC50=2.4 μM). Together, these data revealed that phthalimido derivatives possess a dual antiparasitic profile with potential effects against T. cruzi and lead-like characteristics.  相似文献   

15.
A set of piperonylic acid derived hydrazones with variable isatin moieties was synthesized and evaluated for their inhibitory activity against the enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A/B). The results of in vitro studies revealed IC50 values in the micromolar range, with the majority of the compounds showing selectivity for the MAO-B isoform. N-[2-Oxo-1-(prop-2-ynyl)indolin-3-ylidene]benzo[d][1,3]dioxole-5-carbohydrazide ( 3 ) was identified as a lead AChE inhibitor with IC50=0.052±0.006 μm . N-[(3E)-5-chloro-2-oxo-2,3-dihydro-1H-indol-3-ylidene]-2H-1,3-benzodioxole-5-carbohydrazide ( 2 ) was the lead MAO-B inhibitor with IC50=0.034±0.007 μm , and showed 50 times greater selectivity for MAO-B over MAO-A. The kinetic studies revealed that compounds 2 and 3 displayed competitive and reversible inhibition of AChE and MAO-B, respectively. The molecular docking studies revealed the significance of hydrophobic interactions in the active site pocket of the enzymes under investigation. Further optimization studies might lead to the development of potential neurotherapeutic agents.  相似文献   

16.
Jian Yan  Zhibing Zheng 《ChemMedChem》2023,18(5):e202200573
Cereblon (CRBN) is a substrate receptor of E3 ubiquitin ligase as well as the target of thalidomide and lenalidomide, plays a vital role in endogenous protein degradation. In this article, two series of compounds with novel structure were designed, synthesized and evaluated against CRBN. YJ1b, designed based on our previous finding, shown strong binding affinity toward CRBN (IC50=0.206 μM) by forming a salt bridge interaction with amino acid residue Glu377 of CRBN, it was 13-fold compared with that of lenalidomide (IC50=2.694 μM) in TR-FRET assay. YJ2c and YJ2h, two analogs of YJ1b, also exhibit high binding affinity toward CRBN (IC50=0.211 μM and IC50=0.282 μM, respectively). While, molecular docking and 100 ns molecular dynamic simulation studies were conducted to insight into the unique binding mode of YJ1b, YJ2c and YJ2e toward CRBN. The new compounds with special binding mode in this article may serve for the further optimization and discovery of novel high potent CRBN ligands.  相似文献   

17.
Half‐sandwich rhodium(III) polypyridyl (pp) complexes with the metal atom capped by the facial crown thiaether 1,4,7‐trithiacyclononane [9]aneS3 represent a promising class of apoptosis‐inducing potent cytostatic agents. The necrotic damage caused by the complexes is negligible. In vitro cytotoxicity assays with the human cancer cell lines MCF‐7 and HT‐29 and immortalized HEK‐293 cells indicate that the dicationic κ2N(imino) complexes [([9]aneS3)RhCl(pp)]2+ are much more active than monocationic complexes [([9]aneS3)RhCl2(L)]+ (L=imidazole, CH3CN). Whereas the κ2N(amino) complex [([9]aneS3)RhCl(piperazine)]2+ is inactive, replacing piperazine with the structurally analogous κ2S (thiaether) ligand 1,4‐dithiane restores cytotoxicity as evidenced by IC50 values in the range 8.1‐11.6 μM . Spectroscopic (CD, UV/Vis, NOESY) and viscosity measurements indicate that the active dppz complex 8 (IC50 values: 4.7–8.9 μM ) exhibits strong intercalative binding towards DNA whereas the even more potent bipyrimidine complex 9 (IC50 values: 0.6–1.9 μM ) causes no alteration of the duplex B conformation. Weaker intercalative binding is observed for the dpq complex 7 . A comparative annexin V–propidium iodide binding assay with lymphoma (BJAB) cells and healthy leukocytes demonstrates that the cytotoxic activity of complex 8 and particularly complex 9 is highly selective towards the malignant cells.  相似文献   

18.
In this study, an efficient multistep synthesis of novel aromatic tricyclic hybrids incorporating different biological active moieties, such as 1,3,4-thiadiazole and 1,2,4-triazole, was reported. These target scaffolds are characterized by having terminal lipophilic or hydrophilic parts, and their structures are confirmed by different spectroscopic methods. Further, the cytotoxic activities of the newly synthesized compounds were evaluated using in vitro MTT cytotoxicity screening assay against three different cell lines, including HepG-2, MCF-7, and HCT-116, compared with the reference drug Taxol. The results showed variable performance against cancer cell lines, exhibiting MCF-7 and HepG-2 selectivities by active analogs. Among these derivatives, 1,2,4-triazoles 11 and 13 and 1,3,4-thiadiazole 18 were found to be the most potent compounds against MCF-7 and HepG-2 cancer cells. Moreover, structure–activity relationship (SAR) studies led to the identification of some potent LSD1 inhibitors. The tested compounds showed good LSD1 inhibitory activities, with an IC50 range of 0.04–1.5 μM. Compounds 27, 23, and 22 were found to be the most active analogs with IC50 values of 0.046, 0.065, and 0.074 μM, respectively. In addition, they exhibited prominent selectivity against a MAO target with apparent cancer cell apoptosis, resulting in DNA fragmentation. This research provides some new aromatic-centered 1,2,4-triazole-3-thione and 1,3,4-thiadiazole analogs as highly effective anticancer agents with good LSD1 target selectivity.  相似文献   

19.
Cantharidin ( 1 ) and its derivatives are of significant interest as serine/threonine protein phosphatase 1 and 2A inhibitors. Additionally, compounds of this type have displayed growth inhibition of various tumour cell lines. To further explore both of these inhibition pathways, a number of amide–acid norcantharidin analogues ( 15 – 26 ) were prepared. Compounds 23 and 24 , containing two carboxylic acid residues, showed good PP1 and PP2A activity, with IC50 values of ~15 and ~3 μm, respectively. Substituted aromatic amide analogues 45 , 48 , 49 , 52 , 53 , and 54 also displayed good PP1 and PP2A inhibition, with IC50 values in the range of 15–10 μM (PP1) and 11–5 μM (PP2A). However, bulky ortho substituents on the aromatic ring caused the aromatic ring to be skewed from the NCO planarity, leading to a decrease in PP1 and PP2A inhibition. A number of analogues, 20 , 22, 25 and 46 , showed excellent tumour growth inhibition, with 46 in particular being more potent than the lead, norcantharidin 2 .  相似文献   

20.
In recent years there has been a clear consensus that neurodegenerative conditions can be better treated through concurrent modulation of different targets. Herein we report that combined inhibition of transglutaminase 2 (TG2) and histone deacetylases (HDACs) synergistically protects against toxic stimuli mediated by glutamate. Based on these findings, we designed and synthesized a series of novel dual TG2–HDAC binding agents. Compound 3 [(E)‐N‐hydroxy‐5‐(3‐(4‐(3‐oxo‐3‐(pyridin‐3‐yl)prop‐1‐en‐1‐yl)phenyl)thioureido)pentanamide] emerged as the most interesting of the series, being able to inhibit TG2 and HDACs both in vitro (TG2 IC50=13.3±1.5 μm , HDAC1 IC50=3.38±0.14 μm , HDAC6 IC50=4.10±0.13 μm ) and in cell‐based assays. Furthermore, compound 3 does not exert any toxic effects in cortical neurons up to 50 μm and protects neurons against toxic insults induced by glutamate (5 mm ) with an EC50 value of 3.7±0.5 μm .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号