首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We illustrate some of the uses of micro-computed tomography (micro-CT) to study tissue-engineered bone using a micro-CT facility for imaging and visualizing biomaterials in three dimensions (3-D). The micro-CT is capable of acquiring 3D X-ray CT images made up of 2000(3) voxels on specimens up to 5 cm in extent with resolutions down to 2 microm. This allows the 3-D structure of tissue-engineered materials to be imaged across orders of magnitude in resolution. This capability is used to examine an explanted, tissue-engineered bone material based on a polycaprolactone scaffold and autologous bone marrow cells. Imaging of the tissue-engineered bone at a scale of 1 cm and resolutions of 10 microm allows one to visualize the complex ingrowth of bone into the polymer scaffold. From a theoretical viewpoint the voxel data may also be used to calculate expected mechanical properties of the tissue-engineered implant. These observations illustrate the benefits of tomography over traditional techniques for the characterization of bone morphology and interconnectivity. As the method is nondestructive it can perform a complimentary role to current histomorphometric techniques.  相似文献   

2.
Results are presented studying the contribution of particle toughening to impact damage resistance in carbon fibre reinforced polymer materials. Micro-focus X-ray computed tomography and synchrotron radiation computed laminography were used to provide a novel, multiscale approach for assessing impact damage. Thin (1 mm thick) composite plates containing either untoughened or particle-toughened resin systems were subjected to low velocity impact. Damage was assessed three-dimensionally at voxel resolutions of 0.7 μm and 4.3 μm using SRCL and μCT respectively; the former being an innovative approach to the laterally extended geometry of CFRP plates. Observations and measurements taken from μCT scans captured the full extent of impact damage on both material systems revealing an interconnected network of intra- and inter-laminar cracks. These lower resolution images reveal that the particle-toughened system suppresses delaminations with little effect on intralaminar damage. The higher resolution images reveal that the particles contribute to toughening by crack deflection and bridging.  相似文献   

3.
The role of high-resolution imaging has generally been limited because of the associated loss of signal-to-noise ratio (SNR) as voxel size decreases and imaging time increases. Despite these truths, we show that high-resolution imaging methods can be used to perform better magnetic resonance angiography (MRA), enhance visibility of small structures, and allow better image interpolation. Specifically, we show that very small vessels can be seen with conventional MRA methods, and small lesions on the order of a few cubic millimeters can be seen with a single dose of gadolinium diethyltriaminepentaacetic acid, and structures such as the hippocampal formation are best depicted when a high-resolution three-dimensional (3D) imaging method is used. We also show that image interpolation for the 3D visualization of structures with complicated geometry is best accomplished with a fractional voxel evaluation using the Fourier transform shift theorem on high-resolution images. We demonstrate that the expression for visibility, CNR √p, can be used to establish the optimal resolution to see a given structure. CNR refers to the contrast-to-noise ratio and p is the number of voxels occupied by the object in the image. The optimal resolution is determined from theoretical curves of visibility as a function of voxel size relative to object size. We also demonstrate the enhancement of small vessel visibility on individual images and maximum-intensity projection images with voxel sizes as small as 0.29 mm using 1024 sampled points in the readout direction. Using 3D visibility arguments, it is predicted that under the right conditions, objects of interest much smaller than the voxel size can be seen on conventional MR images. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 529–543, 1997  相似文献   

4.
A Japanese adult male voxel (volume pixel) phantom (hereinafter referred to as the JM phantom) was constructed on the basis of CT images of a healthy Japanese adult male volunteer. Body characteristics of the JM phantom were compared with those of a voxelised MIRD5 type phantom and a Japanese adult male voxel phantom which was previously developed. The voxel size of the JM phantom is 0.98 x 0.98 x 1 mm(3). The shapes of the organs of the JM phantom, even for small or complicated organs, such as thyroid and stomach, are more realistically reproduced as compared with the previous Japanese voxel phantom (voxel size: 0.98 x 0.98 x 10 mm(3)). Photon self-absorbed fractions (self-AFs) for brain, kidneys, spleen, pancreas, thyroid and urinary bladder wall of JM were evaluated and were compared with those of the other phantoms. In consequence, it was suggested that the mass, shape and thickness of organs are important factors for the determination of self-AFs.  相似文献   

5.
Micro-Electromechanical Systems (MEMS) have become increasingly commonplace in varied uses such as miniature pumps, motors, and sensors. As MEMS size continues to decrease, the intricacy of their construction has increased. With this increase in complexity comes a need to evaluate the assembly and functionality of these devices in a nondestructive manner. We proposed the utilization of micro-CT imaging as a method of such evaluation for MEMS devices. Computational simulations were performed in order to determine optimal source materials and imaging parameters for micro-CT scans. Multiple MEMS components of various architecture, fabricated by Sandia National Labs, were then imaged in order to verify the simulations, as well as to prove the feasibility of micro-CT imaging of such devices. The raw data from these scans was run through computational simulations to verify the best choice of filter and interpolation method when reconstructing micro-CT images. The results of the simulations, as well as the level of detail present in the three dimensional reconstructed images of various MEMS devices proved the feasibility of micro-CT as an effective tool for the evaluation of such devices.  相似文献   

6.
The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre.  相似文献   

7.
We have developed an improved x-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (d = .?, R = mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 mum in selected places and 2-3 mum over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 mum in selected places and 5 mum over the focal spot of the Nike laser.  相似文献   

8.
Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.  相似文献   

9.
Water-soluble and biocompatible D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles were synthesized for the first time to be used as x-ray computed tomography (CT) contrast agents. Their average particle diameters were 3.2 ± 0.1 and 2.8 ± 0.1 nm for D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles, respectively. All the nanoparticles exhibited a strong x-ray attenuation. In vivo CT images were obtained after intravenous injection of an aqueous sample suspension of D-glucuronic acid coated Na2WO4 nanoparticles, and positive contrast enhancements in the kidney were clearly shown. These findings indicate that the nanoparticles reported in this study may be promising CT contrast agents.  相似文献   

10.
Current real-time volumetric scanners use a 2-D array to scan a pyramidal volume consisting of many sector scans stacked in the elevation direction. This scan format is primarily useful for cardiac imaging to avoid interference from the ribs. However, a real-time rectilinear volumetric scan with a wider field of view close to the transducer could prove more useful for abdominal, breast, or vascular imaging. In previous work, computer simulations of very sparse array transducer designs in a rectilinear volumetric scanner demonstrated that a Mills cross array showed the best overall performance given current system constraints. Consequently, a 94×94 Mills cross array including 372 active channels operating at 5 MHz has been developed on a flexible circuit interconnect. In addition, the beam former delay software and scan converter display software of the Duke volumetric scanner were modified to achieve real-time rectilinear volumetric scanning consisting of a 30-mm×8-mm×60-mm scan at a rate of 47 volumes/s. Real-time rectilinear volumetric images were obtained of tissue-mimicking phantoms, showing a spatial resolution of 1 to 2 mm. Images of carotid arteries in normal subjects demonstrated tissue penetration to 6 cm  相似文献   

11.
Abstract

Water-soluble and biocompatible D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles were synthesized for the first time to be used as x-ray computed tomography (CT) contrast agents. Their average particle diameters were 3.2 ± 0.1 and 2.8 ± 0.1 nm for D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles, respectively. All the nanoparticles exhibited a strong x-ray attenuation. In vivo CT images were obtained after intravenous injection of an aqueous sample suspension of D-glucuronic acid coated Na2WO4 nanoparticles, and positive contrast enhancements in the kidney were clearly shown. These findings indicate that the nanoparticles reported in this study may be promising CT contrast agents.  相似文献   

12.
Qin  Reng  Zhou  Wei  Han  Kang-ning  Liu  Jia  Ma  Lian-hua 《Journal of Materials Science》2021,56(36):19936-19954

Aiming to investigate the effects of the near-surface delamination on buckling response behavior of carbon fiber reinforced laminated composites under different bending modes, acoustic emission (AE) data analysis and X-ray micro-computed tomography (micro-CT) imaging method were promoted to characterize the mechanical properties, acoustic responses and damage visualization. Due to the existence of the artificial embedded delamination, when subjected to local compression induced by bending loads, the laminated composites showed a strong tendency to buckling behavior. The mechanical properties indicated that under different bending modes, the size of delamination had little influence on the relative change ratio of ultimate bearing capacity, but the thickness of specimen had a significant influence on the relative change ratio of ultimate load. AE monitoring results showing the characteristics of energy release for composites were related to the mutation rate of load curve. Moreover, cluster results indicate that matrix failure, interfacial failure and fiber failure are the main damage mechanisms. Micro-CT results illustrated that as the thickness of composites increases, there is a reduction in crack density. AE monitoring can reflect the initiation and evolution process of damage, and damage mechanism identification can be realized by clustering analysis. Besides, the internal damage morphologies acquired by micro-CT can directly verify the damage mechanisms. The cross-validation of AE and micro-CT can provide a basis for structural health monitoring of composites.

  相似文献   

13.
A high-resolution three-dimensional (3D) imaging technology has been developed, which is a combination of x-ray holography and computerized tomography (CT) technology called holographic computerized tomography (HCT). The theory and experimental techniques on biological specimens with the use of synchrotron radiation are discussed. Projections at different angles are reconstructed with the numerical method of in-line holography, and then the reconstructed data with a higher lateral resolution are used to restore the 3D image by the CT technique. With this method, the degradation caused by the diffraction of x rays is canceled, and 3D images with high resolution of micrometer magnitude in both the lateral and the longitudinal directions are obtained.  相似文献   

14.
Medical images are obtained with computer-aided diagnosis using electronic devices such as CT scanners and MRI machines. The captured computed tomography (CT)/magnetic resonance imaging (MRI) images typically have limited spatial resolution, low contrast, noise and nonuniform variability in intensity due to environmental effects. Therefore, the distinctions of the objects are blurred, distorted and the meanings of the objects are not quite precise. Fuzzy sets and fuzzy logic are best suited for addressing vagueness and ambiguity. Fuzzy clustering technique has been commonly used for segmentation of images throughout the last decade. This study presents a comparative study of 14 fuzzy-clustered image segmentation algorithms used in the CT scan and MRI brain image segments. This study used 17 data sets including 4 synthetic data sets, namely, Bensaid, Diamond, Square, and its noisy version, 5 real-world digital images, and 8 CT scan/MRI brain images to analyze the algorithms. Ground truth images are used for qualitative analysis. Apart from the qualitative analysis, the study also quantitatively evaluated the methods using three validity metrics, namely, partition coefficient, partition entropy, and Fukuyama-Sugeno. After a thorough and careful review of the results, it is observed that extension of the fuzzy C-means (EFCM) outperformed every other image segmentation algorithm, even in a noisy environment, followed by kernel-based FCM σ, the output of which is also very good after EFCM.  相似文献   

15.
At present, interventional procedures, such as stent placement, are performed under X-ray image guidance. Unfortunately with X-ray imaging, both patient and interventionalist are exposed to ionising radiation. Furthermore, X-ray imaging is lacking soft tissue contrast and is not capable of true 3-D displays of either interventional device or tissue morphology. Magnetic resonance imaging (MRI) offers excellent soft tissue contrast, 3-D acquisition techniques, as well as rapid image acquisition and reconstruction. Despite these advantages, MR-guided interventions are challenging owing to the limited access to the patient, strong magnetic and radio-frequency fields that require special interventional devices, inferior image frame rates and spatial resolution, and high MRI scanner noise. For MR-guided intravascular interventions, where access to the target organ is achieved through catheters, dedicated hardware and automated image slice positioning techniques have been developed. We illustrate that MR-guided renal embolisations can be performed in closed-bore high-field MR scanners.  相似文献   

16.
Two phantoms have been constructed for assessing performance of high-frequency ultrasound imagers. They also allow for periodic quality assurance tests and training technicians in the use of higher-frequency scanners. The phantoms contain eight blocks of tissue-mimicking material; each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the frequency dependence of the backscatter coefficient of the background material. Because spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high-frequency scanners are compared. One employs single-element (fixed focus) transducers (25 and 55 MHz), and the other employs variable focus linear arrays (20, 30, and 40 MHz). The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. In this preliminary report, only one human observer analyzed images.  相似文献   

17.
通过对软组织血肿的CT影像进行观察分析,不同部位、不同原因引起的血肿均表现为软组织内等密度、略低密度、高密度团块,团块周围组织肿胀,肌索增粗,肌间隙消失,脂肪结构混浊不清等影像,以此显示CT是软组织血肿的经济、快捷,简便易行的影像学检查方法.  相似文献   

18.
Digital tomosynthesis (DTS) has been widely used in both industrial nondestructive testing and medical x-ray imaging as a popular multiplanar imaging modality. However, although it provides some of the tomographic benefits of computed tomography (CT) at reduced dose and imaging time, the image characteristics are relatively poor due to blur artifacts originated from incomplete data sampling for a limited angular range and also aspects inherent to imaging system, including finite focal spot size of the x-ray source, detector resolution, etc. In this work, in order to overcome these difficulties, we propose an intuitive method in which a compressed-sensing (CS)-based deblurring scheme is applied to the projection images before common DTS reconstruction. We implemented the proposed deblurring algorithm and performed a systematic experiment to demonstrate its viability for improving the image characteristics in DTS. According to our results, the proposed method appears to be effective for the blurring problems in DTS and seems to be promising to our ongoing application to x-ray nondestructive testing.  相似文献   

19.
建立了确定显微计算机断层扫描技术(Micro-CT)扫描最合适分辨率的方法,并基于CT图像分析了3K五枚缎纹织物的结构,预测了渗透率。首先,将织物理想单胞模型转换为不同分辨率二维切片,考察分辨率对单胞结构、渗透率表征的影响,提出了确定Micro-CT扫描最合适分辨率的方法;其次,采用确定的分辨率对织物进行Micro-CT扫描,获取织物细观结构;最后,使用CT三维细观结构进行厚度方向渗透率数值预测,研究了织物结构的空间离散性对厚度方向渗透率的影响。结果表明:对于本文所用五枚缎纹织物,采用15μm分辨率进行Micro-CT扫描最合适;通过Micro-CT可准确获取织物纤维束的路径及截面变化;多层织物的孔隙沿3个主方向均呈现周期性排布,且束间孔隙率均值为16.6%;使用真实CT模型的厚度方向渗透率预测结果与实验值具有良好的吻合性。  相似文献   

20.
The purpose of this study is to evaluate image quality of various computed tomography (CT) scanners installed in Greece, as well as to investigate patient doses from common CT examinations. An image quality survey was performed in 44 CT scanners countrywide. The imaging performance of the systems was evaluated by measurements of certain parameters, such as image noise, spatial uniformity, high- and low-contrast resolution and slice thickness accuracy. Moreover, preliminary results of patient dose survey are presented. Concerning image quality, 80 % of the scanners were found to be in compliance with the national legislation and relative international guidelines for all the examined parameters. Weighted CT dose index and dose-length product values for chest and abdomen routine examinations were generally below the dose reference levels (DRLs) suggested by the European Commission. However, some scanners were found to deliver significantly higher doses than the suggested DRL for head routine examinations. Finally, differences in the performance among scanners of the same type and similar age were observed, pointing out the importance of frequent calibration, routine quality control and proper maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号