首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用高密度聚乙烯(HDPE)为增韧剂、乙烯 丙烯 二烯三元共聚物(EPDM)、乙烯 辛烯共聚物(POE)为相容剂、石墨为功能性助剂制备了以无规共聚聚丙烯(PP R)或嵌段共聚聚丙烯(PP B)为基体的PP R或PP B/HDPE/石墨复合材料。详细研究了HDPE含量、弹性体种类及含量对PP R或PP B/HDPE/石墨复合材料力学性能的影响。结果表明HDPE用量在20%、EPDM含量为5%时,PP R或PP B复合材料力学性能优异;POE可以实现PP R或PP B/HDPE/石墨复合材料力学性能的平衡。  相似文献   

2.
HDPE增韧PP-R(PP-B)/弹性体/石墨复合材料的研究   总被引:1,自引:0,他引:1  
采用高密度聚乙烯(HDPE)为增韧剂,(乙烯/丙烯/二烯)共聚物(EPDM)、(乙烯/辛烯)共聚物(POE)弹性体为增容剂,石墨为功能性助剂制备了以无规共聚聚丙烯(PP-R)或嵌段共聚聚丙烯(PP-B)为基体的PP-R(PP-B)/HDPE/弹性体/石墨复合材料。研究了HDPE含量、弹性体种类及含量对PP-R(PP-B)复合材料力学性能的影响。结果表明,HDPE含量在20%、EPDM含量为5%时,PP-R(PP-B)复合材料的力学性能优异;POE可以使PP-R复合材料的力学性能达到均衡。  相似文献   

3.
《塑料》2016,(2)
采用熔融共混的方法,通过无机粒子填充HDPE/POE共混体系制备复合材料。研究了Al粉、Al_2O_3粉、石墨(GP)这3种单一填料以及Al_2O_3/GP、Al/GP共2种复配填料对复合材料的导热导电和流变性能的影响。流变性能表明复合材料的动态模量随着石墨含量的增加而增加,且复合材料的损耗因子(tanδ)逐渐减小。当石墨含量(质量分数)为33%和50%时,复合材料的损耗因子小于1,复合材料内填料形成了网络结构。由于形成了导热导电通路,复合材料的热导率和电导率都得到明显提高。将含量为50%的石墨填充到HDPE/POE基体中,HDPE/POE/GP的导热率是1.8 W/(m·K),是HDPE/POE的5.3倍。  相似文献   

4.
采用高密度聚乙烯(HDPE)为基体材料,石墨为导电填料,通过物理共混法制备其导电复合材料。对不同石墨添加量的导电复合材料力学性能、热性能和导电性能进行测定,分析了石墨对其复合材料性能的影响。结果表明,不同石墨添加量的复合材料均具有良好的力学性能;石墨填料能够同时改善复合材料的导热性能和热稳定性;石墨能够降低HDPE基复合材料的电阻率,改善材料导电性。  相似文献   

5.
采用高密度聚乙烯(HDPE)作为基体树脂,微波改性竹炭作为填料,通过熔融接枝法制备了HDPE基微波竹炭复合材料,分析了顺丁烯二酸酐(MAH)、过氧化二异丙苯(DCP)的含量及比例,对复合材料静态、动态力学性能和热稳定性能的影响。静态力学性能结果表明,随着MAH、DCP含量的增加,HDPE基微波竹炭复合材料的力学性能呈先增大后降低的趋势;当MAH含量一定,MAH∶DCP比例为2∶0.1时,HDPE基微波竹炭复合材料的力学性能较优。动态热机械分析仪(DMA)与热重分析仪(TGA)分析表明,MAH熔融接枝改性提高了HDPE与微波竹炭两相之间的界面作用力,有利于改善HDPE与微波竹炭的界面性能,与SEM分析结果一致;并且,还能提高复合材料在高温下的热稳定性。  相似文献   

6.
《炭素》2017,(4)
通过对石墨烯(GN)制备、结构改性及与聚苯胺(PANI)、银粒子(Ag)的复合,设计了制备GN/PANI/Ag新型电极复合材料的工艺路线。首先利用Hummers氧化还原法将石墨氧化成氧化石墨烯,利用硼氢化钠将氧化石墨烯还原成石墨烯,将石墨烯与聚苯胺、银粒子反应,最后制得了GN/PANI/Ag复合材料。利用扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析(TG)和电导率测试对GN和GN/PANI/Ag的形貌,热稳定性和电化学性能进行了分析研究。结果表明,聚苯胺类衍生物、石墨烯以及银粒子三相在整个复合材料中共存,材料的复合使体系热稳定性和电化学性能得到提高。  相似文献   

7.
以高密度聚乙烯(HDPE)为基体树脂、聚烯烃弹性体(POE)为增韧剂、纳米有机蒙脱土(OMMT)为补强剂、马来酸酐接枝高密度聚乙烯(HDPE-g-MAH)为相容剂,采用熔融共混法制备了HDPE/POE/OMMT/HDPEg-MAH复合材料,并通过扫描电子显微镜(SEM)对复合材料的微观结构进行了表征。结果表明:当HDPE/POE/OMMT/HDPE-g-MAH复合材料的共混比例为90/10/5/10,且相容剂中MAH的含量为3%时,复合材料具有最佳综合力学性能和良好的加工性能。  相似文献   

8.
对聚氯乙烯(PVC)、高密度聚乙烯(HDPE)、聚丙烯(PP)三种通用树脂进行玻璃纤维增强、无机纳米粒子改性制备热塑性树脂基纳米复合材料,可在复合材料与树脂成本基本持平的条件下,使复合材料的力学性能比基体树脂有较大提高,接近甚至达到了工程塑料的水平,为通用塑料工程化探索一行之有效的技术途径。  相似文献   

9.
采用原位成纤法,将高密度聚乙烯(HDPE)与可膨胀石墨(EG)复合制备HDPE/EG复合材料。对该复合材料进行X射线衍射(XRD)、扫描电镜(SEM)、力学硬度的测试,发现EG的加入并没有改变HDPE的晶型结构,HDPE与EG的复合程度较高,复合材料的力学硬度随EG含量的增大而显著下降。将该复合材料应用于含酚废水的动态吸附,发现当控制流速在7 m L/min,处理量为150 m L/批次时,吸附效果良好,废水的含酚总量由原来的93mg/m L降至7. 5 mg/m L,进一步采用该复合材料进行二次吸附,可将总酚含量降至1. 3 mg/m L,吸附率达到98. 6%,吸附效果表现优秀。  相似文献   

10.
双马来酰亚胺树脂基高介电材料的制备及性能研究   总被引:1,自引:0,他引:1  
采用原位聚合法将石墨和CaCu3Ti4O12(CCTO)与双马来酰亚胺树脂(BMI)、二烯丙基双酚A(BA)复合制备石墨/BMI/BA和CCTO/BA/BMI高介电复合材料。研究了石墨和CCTO含量对复合材料的介电性能的影响,结果表明,石墨含量的增加提高了材料的介电常数和介电损耗,在石墨含量约为11.975%时出现渗流效应,介电损耗增长较大,但最大值仍小于1。CCTO含量的增加也提高了材料的介电常数和介电损耗,材料的介电常数最大时为纯BMI/BA树脂的19倍;而介电损耗较小,最大值小于0.08。  相似文献   

11.
The dispersion of graphite nanosheets (GNs) in polymer matrices via the masterbatch technique was investigated. Modifying resin was added to GNs to prepare blend which is designated as the masterbatch. Such masterbatches, containing 70–80 wt % of GN filler, were blended with target polymers via melt extrusion process to prepare polymer/GN nanocomposites. The extruded nanocomposites showed characteristic conducting percolation behaviors with the percolation thresholds mainly dependent on the miscibility of the modifying resin with polymer matrix. The percolation thresholds of AS (Acrylonitrile‐Styrene compolymer)/GN and high‐density polyethylene (HDPE)/GN nanocomposites prepared by this technique were about 9 and 14 wt % of GN, respectively. Scanning electron microscopy and other characterizations showed that the GNs were well dispersed in AS and HDPE resins. The extrusion process and compatibility of the modifying resin with target polymer proved to be important factors for the homogeneity of the nanodispersion. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3470–3475, 2007  相似文献   

12.
In this work, the properties of high density polyethylene (HDPE)/graphite nanosheets (GN) and HDPE/carbon black (CB) nanocomposites prepared by melt mixing were studied. GN‐filled HDPE nanocomposites exhibited very low percolation threshold (ca. 6 wt%) as compared with that of HDPE/CB (ca. 22 wt%). Moreover, the impact strength and processing properties of HDPE/GN nanocomposites were superior to those of HDPE/CB within a certain content of fillers. The large aspect ratio of GN plays an important role in reducing the percolation threshold of HDPE/GN nanocomposites. Furthermore, the tensile fracture morphology revealed the formation of continuous conducting networks after the content of GN reached the critical percolation threshold. Differential scanning calorimetry (DSC) analysis illustrated a decreasing degree of crystallinity of HDPE/GN nanocomposites, while the crystalline temperature varied slightly. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
HDPE/EVOH高阻隔性材料的形态结构   总被引:12,自引:2,他引:10  
采用层状分散形态共混技术制备了HDPE/EVOH高阻隔性材料,研究了增容剂的制备及其用量对材料形态结构的影响。结果表明采用EVOH/相容剂和HDPE、EVOH制备的母粒能明显改变材料的流变性能,当采用EVOH/增容剂为4/1的阻隔母粒,所得材料的结构为大而均匀的片状形态,具有优异的阻隔性。所得材料应在较小的剪切速率下加工成型,以利于EVOH形成较大的相区  相似文献   

14.
High Density Polyethylene (HDPE) was melt extruded with different amounts of expanded graphite (EG) based masterbatches. Conductive composites were obtained by diluting PE and PS masterbatches with 60 wt% content of expanded graphite. These masterbatches were readily dispersed into the molten HDPE matrix yielding well‐dispersed HDPE/EG nanocomposites which couldn't be done by direct melt extrusion process under the same conditions. Electrical conductivity measurements showed a reduced percolation threshold by this masterbatch filling technique while the resulting composites were 2–3 orders of magnitude lower than that of direct melt extrusion because EG sheets were effectively encapsulated by PE or PS carriers in these masterbatches which leads to a better EG dispersion in composites. Both scanning electron microscopy (SEM) and X‐Ray diffraction (XRD) proved an excellent dispersion of EG in polymer matrix with the worm‐like structure tended to break into pieces under intensive rolling. The improvements in mechanical and thermal properties have been studied for the nanocomposites as prepared by masterbatch process. The results depended greatly on the dispersion of EG and the compatibility between masterbatch and HDPE matrix. POLYM. ENG. SCI., 47:882–888, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
High Density Polyethylene (HDPE) and calcium carbonate (CaCO3) nanocomposites were prepared from masterbatch by melt blending in twin screw extruder (TSE). The physical properties of HDPE/CaCO3 nanocomposites samples (0, 10 and 20?wt% CaCO3 masterbatch) were investigated. The morphology, thermal, rheological/viscoelastic and mechanical properties of the nanocomposites were characterized by Atomic Force microscopy (AFM), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analyzer (DMA) as well as tensile test. The AFM images showed homogeneous dispersion and distribution of nano-CaCO3 in the HDPE matrix. The DSC analysis showed a decrease in crystallinity of HDPE/CaCO3 nanocomposites with the increase of CaCO3 loading. This was due to the presence of nanofiller which could restrict the movement of the polymer chain segments and reduced the free volume/spaces available to be occupied by the macromolecules, thus, hindered the crystal growth. However, there was an increase in crystallization temperature about 1?C2?°C with the addition of CaCO3. It was suggested that the CaCO3 nanoparticles acted as nucleating agent. In melt rheology study, the complex viscosities of HDPE/CaCO3 nanocomposites were higher than the HDPE matrix and increased with the increasing of CaCO3 masterbatch loading. The DMA results showed that the storage modulus increased with the increasing of nano-CaCO3 contents. The improvement was more than 40?%, as compared to that of neat HDPE. Additionally, the tensile test results showed that with the addition of CaCO3 masterbatch, modulus elasticity of nanocomposites sample increased while yield stress decreased.  相似文献   

16.
弹性体对HDPE/E-TMB共混物性能的影响   总被引:1,自引:0,他引:1  
用自制增韧母料(E-TMB)与高密度聚乙烯(HDPE)热机械共混分别制得HDPE/E-TMB的J系列共混物和S系列共混物,研究了E—TMB中乙丙弹性体M与丁苯弹性体N质量比对共混物力学性能及熔体质量流动速率(MFR)的影响。结果表明,共混物熔体的MFR随母料中N用量的增加逐渐减小;当E-TMB中m(M)/m(N)=80/20时,J类共混物的综合力学性能最好;当m(M)/m(N)=0/100时,s类共混物的力学性能最好。  相似文献   

17.
In order to study the effect of introducing ethylene‐ethylacrylate copolymer (EEA) in carbon black‐HDPE composite systems, two HDPE‐EEA composites prepared by pre‐blending and masterbatch‐blending processes were compared with HDPE and EEA composites in terms of positive temperature coefficient (PTC) characteristics and percolation threshold. The percolation threshold of masterbatch‐blended composites occurred at the lowest carbon black concentration among four kinds of composites. The conduction path in the masterbatch‐blended composite is effectively formed as a result of the localization of carbon black distribution predominantly in the EEA phase, resulting in an increase of conductivity. Ipeak values, the resistivity ratio of the peak to 25°C, of two blend composites were lower than those of HDPE composites. The I85 values, the resistivity ratio of 85°C to 25°C, of masterbatch‐blended composites were higher than those of pre‐blended as well as HDPE composites. It is evident that since most carbon black is dispersed in the EEA phase of the masterbatch‐blended composites, the conduction networks are mainly broken by the crystal melting of EEA before the temperature reaches the crystal melting temperature of HDPE.  相似文献   

18.
Nanoclay (NC) reinforced high‐density polyethylene (HDPE) composites were prepared by different melt compounding methods using (1) a single screw extruder (SSE), (2) twin screw extruder (TSE), (3) a combination of SSE and extensional flow mixer (EFM), and (4) a bowl mixer masterbatch method (MB). PE‐grafted maleic anhydride (PE‐g‐MA) was used as a compatibilizer. EFM increased complex melt viscosity (η*) of the HDPE/NC composites as compared to the neat HDPE and also provided a better interaction between HDPE and NC to create slightly lower melt η* as compared to MB and PE‐g‐MA composites. The low viscosity melt behavior of the pure HDPE changes to more solid like melt behavior in the PE‐g‐MA HDPE/NC composites in the low frequency (ω) region. PE‐g‐MA + EFM method exhibited better impact strength compared to the other HDPE/NC composites. Using the PE‐g‐MA and masterbatch compounding methods had a beneficial role in improving mechanical properties. POLYM. ENG. SCI., 57:324–334, 2017. © 2016 Society of Plastics Engineers  相似文献   

19.
Silicone masterbatch (SMB) is a pelletized formulation containing 50% of an ultrahigh molecular‐weight polydimethylsiloxane dispersed in polyethylene. This SMB is designed to be used as an additive in polyethylene‐compatible systems to impart benefits such as processing improvement and modification of surface characteristics. In this work, binary blends of high‐density polyethylene (HDPE) and SMB were prepared by melt‐mixing technique to study the influence of this masterbatch on the processing and mechanical properties of HDPE. Ternary blends were also prepared by the addition of silane‐grafted polyethylene (HDPE‐VTES) as compatibilizer. The blends were analyzed by melting flow rate (MFR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile tests. Data of final torque and MFR showed that SMB improved the processability of pure HDPE. DSC results showed differences in crystalline behavior between binary and ternary blends. In the former, the degree of crystallinity increased up to 10 wt % of SMB content; beyond this concentration, it decreased. In ternary blends, a reverse behavior was observed. The morphologic study showed silicone particles uniformly distributed in HDPE matrix. With high SMB concentration, the addition of HDPE‐VTES significantly reduced the size of silicone particles. In the range of SMB composition studied, the mechanical properties of blends lower slightly compared to pure HDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2347–2354, 2002  相似文献   

20.
介绍了HDPE硅芯管专用料6200M的主要特性,并详细叙述了以6200M和硅芯层母料为主要原料制备硅芯管的生产过程和应用情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号