首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cherng-Yuan Lin  Chiao-Lei Fan 《Fuel》2011,90(6):2240-2244
The fuel properties of the biodiesel produced from Camellia oleifera Abel oil through supercritical-methanol transesterification with no catalyst was investigated in this study. An emulsion of raw C. oleifera Abel oil dispersed in methanol was prepared prior to being poured into a supercritical-methanol reaction system to undergo the transesterification reaction. The fuel properties of the resulting biodiesel were analyzed and compared with those of a commercial biodiesel and with ASTM No. 2D diesel fuel. The experimental results show oleic acid (C18:1) and palmitic acid (16:0) to be the two major components of the C. oleifera Abel oil biodiesel. It also contains significantly higher mono-unsaturated fatty acids and long carbon-chain fatty acids ranging from C20 to C22 than those found in the commercial biodiesel. However, relative to the commercial biodiesel, the C. oleifera Abel oil biodiesel has significantly fewer poly-unsaturated fatty acids with more than three double bonds, which implies that it also has a much higher degree of oxidative stability. In addition, the biodiesel produced from C. oleifera Abel oil was also found to have more favorable fuel properties than the commercial biodiesel produced from waste cooking oil, including a higher heat of combustion and flash point and lower levels of kinematic viscosity, water content, and carbon residue. Moreover, the former appears to have much lower peroxide and acid values, and thus a much higher degree of oxidative stability than the latter.  相似文献   

2.
Gina Hincapié 《Fuel》2011,90(4):1618-1623
In the present study, biodiesel production from Ricinus communis L. red and BRS-149 nordestina varieties seed oil is reported. Reactions were made through conventional and in situ processes using ethanol and evaluating the addition of n-hexane as co-solvent. The content of ethyl esters was quantified by 1H NMR. The highest conversions were obtained from crude oil (conventional reaction) after pre-esterification, using ethanol and a molar ratio of alcohol to oil of 60; furthermore, the addition of n-hexane was not significant on yield. Under these conditions, best conversion was around 95% for both varieties.  相似文献   

3.
Terminalia (Terminalia belerica Robx.) is available in the northeastern region of India. The fruit of terminalia has some medicinal value and its kernel contains 43% oil. The prospect of terminalia oil for biodiesel production is investigated with reference to some relevant properties. The fatty acid profile of oil extracted from terminalia is found comparable with similar seed oils attempted for biodiesel production in this region. Terminalia oil contains 32.8% palmitic acid, 31.3% oleic acid, and 28.8% linoleic acid. The calorific value and kinematic viscosity of terminalia oil are 37.50 MJ/kg and 25.60 cSt, respectively. The calorific value and cetane number of terminalia FAME are within the acceptable limit of the EN 14214 standard. However, the flash point of terminalia FAME (90 °C) is relatively lower than the minimum required standard. Overall, the properties of biodiesel obtained from terminalia seed conform to the existing biodiesel standard. In addition to assisting the national biodiesel mission, the extension and regeneration of forest areas through terminalia planting would help us to curb the seemingly irreversible trend of de-forestation in the northeast region of India.  相似文献   

4.
Jibrail Kansedo  Subhash Bhatia 《Fuel》2009,88(6):1148-1150
This paper explores the feasibility of converting Cerbera odollam (sea mango) oil into biodiesel. The first part of this study focused on the extraction of oil from the seeds of C. odollam fruits, whereas the second part focused on the transesterification of the extracted oil to fatty acid methyl esters (FAME). The transesterification reactions were carried out using three different catalysts; sodium hydroxide (NaOH) as a homogenous catalyst, sulfated zirconia alumina and montmorillonite KSF as heterogeneous catalysts. The seeds were found to contain high percentage of oil up to 54% while the yield of FAME can reach up to 83.8% using sulfated zirconia catalyst.  相似文献   

5.
R. Maceiras  M. Vega  P. Ramos 《Fuel》2009,88(11):2130-2134
The enzymatic production of biodiesel from waste frying oil with methanol has been studied using immobilized lipase Novozym 435 as catalyst. The effects of methanol to oil molar ratio, dosage of enzyme and reaction time were investigated. The optimum reaction conditions were methanol to oil molar ratio of 25:1, 10% of Novozym 435 based on oil weight and reaction period of 4 h at 50 °C obtaining a biodiesel yield of 89.1%. Moreover, the reusability of the lipase over repeated cycles was also investigated under standard conditions.  相似文献   

6.
The production of biodiesel fuel from crude roselle oil was evaluated in this study. The process of alkali-catalyzed transesterification with methanol was carried out to examine the effects of reaction variables on the formation of methyl ester: variables which included methanol-to-oil molar ratios of 4:1-10:1, catalyst concentrations of 0.25-2.0% w/w of oil, reaction temperatures of 32-60 °C, and reaction times of 5-80 min. The methyl ester content from each reaction condition was analyzed by gas chromatography (GC), the optimum condition having been achieved at a methanol-to-oil molar ratio of 8:1, a catalyst concentration of 1.5% w/w of oil, a reaction temperature of 60 °C, and a reaction time of 60 min. The resultant methyl ester content of 99.4% w/w, plus all of the other measured properties of the roselle biodiesel, met the Thai biodiesel (B100) specifications and international standards EN 14214:2008 (E) and ASTM D 6751-07b, with the exception of a higher carbon residue and lower oxidation stability.  相似文献   

7.
Prafulla D. Patil 《Fuel》2009,88(7):1302-1306
The non-edible vegetable oils such as Jatropha curcas and Pongamia glabra (karanja) and edible oils such as corn and canola were found to be good viable sources for producing biodiesel. Biodiesel production from different edible and non-edible vegetable oils was compared in order to optimize the biodiesel production process. The analysis of different oil properties, fuel properties and process parameter optimization of non-edible and edible vegetable oils were investigated in detail. A two-step and single-step transesterification process was used to produce biodiesel from high free fatty acid (FFA) non-edible oils and edible vegetable oils, respectively. This process gives yields of about 90-95% for J. curcas, 80-85% for P. glabra, 80-95% for canola, and 85-96% for corn using potassium hydroxide (KOH) as a catalyst. The fuel properties of biodiesel produced were compared with ASTM standards for biodiesel.  相似文献   

8.
Xinhai Yu  Zhenzhong Wen  Shan-Tung Tu 《Fuel》2011,90(5):1868-1874
This study investigates the use of CaO-CeO2 mixed oxides as solid base catalysts for the transesterification of Pistacia chinensis oil with methanol to produce biodiesel. These CaO-CeO2 mixed-oxide catalysts were prepared by an incipient wetness impregnation method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The cerium improved the heterogeneous catalytic stability remarkably due to the defects induced by the substitution of Ca ions for Ce ions on the surface. The best catalyst was determined to be C0.15-973 (with a Ce/Ca molar ratio of 0.15 and having been calcined at 973 K), considering its catalytic and anti-leaching abilities. The effects of reaction parameters such as the methanol/oil molar ratio, the amount of catalyst amount and the reaction temperature were also investigated. For the C0.15-973 regenerated after five reuses, the biodiesel yield was 91%, which is slightly less than that of the fresh sample. The test results revealed that the CaO-CeO2 mixed oxides have good potential for use in the large-scale biodiesel production.  相似文献   

9.
Y.C. Sharma  Bhaskar Singh 《Fuel》2010,89(7):1470-1474
Kusum (Schleichera triguga), a non-edible oil bearing plant has been used as an ideal feedstock for biodiesel development in the present study. Various physical and chemical parameters of the raw oil and the fatty acid methyl esters derived have been tested to confirm its suitability as a biodiesel fuel. The fatty acid component of the oil was tested by gas chromatography. The acid value of the oil was determined by titration and was found to 21.30 mg KOH/g which required two step transesterification. Acid value was brought down by esterification using sulfuric acid (H2SO4) as a catalyst. Thereafter, alkaline transesterification was carried out using potassium hydroxide (KOH) as catalyst for conversion of kusum oil to its methyl esters. Various parameters such as molar ratio, amount of catalyst and reaction time were optimized and a high yield (95%) of biodiesel was achieved. The high conversion of the feedstock into esters was confirmed by analysis of the product on gas chromatograph-mass spectrometer (GC-MS). Viscosity and acid value of the product biodiesel were determined and found to be within the limits of ASTM D 6751 specifications. Elemental analysis of biodiesel showed presence of carbon, hydrogen, oxygen and absence of nitrogen and sulfur after purification. Molar ratio of methanol to oil was optimized and found to be 10:1 for acid esterification, and 8:1 for alkaline transesterification. The amounts of H2SO4 and KOH, 1% (v/v) and 0.7% (w/w), respectively, were found to be optimum for the reactions. The time duration of 1 h for acid esterification followed by another 1 h for alkaline transesterification at 50 ± 0.5 °C was optimum for synthesis of biodiesel.  相似文献   

10.
In the present work, the transesterification reaction of soybean frying oil with methanol, in the presence of different heterogeneous catalysts (Mg MCM-41, Mg-Al Hydrotalcite, and K+ impregnated zirconia), using low frequency ultrasonication (24 KHz) and mechanical stirring (600 rpm) for the production of biodiesel fuel was studied. Selection of catalysts was based on a combination of porosity and surface basicity. Their characterization was carried out using X-ray diffraction, Nitrogen adsorption-desorption porosimetry and scanning electron microscopy (SEM) with energy dispersive spectra (EDS). The activities of the catalysts were related to their basic strength. Mg-Al hydrotalcite showed particularly the highest activity (conversion 97%). It is important to mention that the catalyst activity of ZrO2 in the transesterification reaction increased as the catalyst was enriched with more potassium cations becoming more basic. Use of ultrasonication significantly accelerated the transesterification reaction compared to the use of mechanical stirring (5 h versus 24 h).  相似文献   

11.
A high quality biodiesel was produced from Mexican Jatropha curcas crude oil (JCCO) by a two step catalyzed process. The free fatty acids (FFA) were first esterified with methanol, catalyzed by a solid catalyst: SiO2 pretreated with HF. The catalyst showed a high number of Lewis acid surface sites, and no CO2 or H2O adsorption activity. This catalyst showed a high FFA esterification activity and high stability. After 30 esterification runs, the catalyst activity remained unchanged. During the second step, the triglycerides present in the JCCO were transesterified with methanol catalyzed by NaOH. The chromatographic analysis of the biodiesel obtained, revealed that the process proposed in this investigation led to a very high quality biodiesel, meeting the international requirements for its utilization as a fuel. The combustion gas emissions of the JCCO biodiesel were studied by FTIR spectroscopy using a laboratory combustor. These preliminary results showed low amounts of aromatic and sulfur containing compounds. However, halogenated compounds and dicyclopentadiene were also detected at the combustor exhaust.  相似文献   

12.
Jatropha curcas L. has recently been hailed as the promising feedstock for biodiesel production as it does not compete with food sources. Conventional production of biodiesel from J. curcas L. seeds involve two main processing steps; extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME). In this study, the feasibility of in situ extraction, esterification and transesterification of J. curcas L. seeds to biodiesel was investigated. It was found that the size of the seed and reaction period effect the yield of FAME and amount of oil extracted significantly. Using seed with size less than 0.355 mm and n-hexane as co-solvent with the following reaction conditions; reaction temperature of 60 °C, reaction period of 24 h, methanol to seed ratio of 7.5 ml/g and 15 wt% of H2SO4, the oil extraction efficiency and FAME yield can reached 91.2% and 99.8%, respectively. This single step of reactive extraction process therefore can be a potential route for biodiesel production that reduces processing steps and cost.  相似文献   

13.
The immiscibility of methanol and vegetable oil leads to a mass-transfer resistance in the transesterification of vegetable oil. To overcome this problem, dimethyl ether (DME) was used as an environmentally friendly cosolvent to produce a homogeneous solution. Methylesterifications of corn oil in both the presence and the absence of DME were performed using p-toluenesulfonic acid (PTSA), benzenesulfonic acid and sulfuric acid. PTSA showed highest catalytic activity. The yield of FAME reached 97.1% when 4 wt% of PTSA based on the oil weight was used at 80 °C with a reaction time of 2 h in the presence of DME. The obtained biodiesel was composed of methyl palmitate (9.1 wt%), methyl oleate (33.9 wt%), methyl linoleate (53.5 wt%), methyl linolenate (3.0 wt%) and methyl arachidate (0.5 wt%), and it was similar to the biodiesel compositions from corn oil as reported. The effects of concentrations of FFA and water on FAME yields were also investigated. All results suggested that the reaction rate was greatly improved by the addition of DME to the reaction system.  相似文献   

14.
Dj. Vujicic  A. Zarubica  G. Boskovic 《Fuel》2010,89(8):2054-2061
Calcium oxide as a heterogeneous catalyst was investigated for its effect on the biodiesel synthesis from refined sunflower oil. Experiments were carried out using a commercial bench stirred tank reactor of 2 dm3 volume, at 200 rpm, with a methanol to oil ratio 6 to 1 and 1 mas.% catalyst loading as constant parameters. Ester yields were followed as a function of temperature (60-120 °C), pressure (1-15 bars) and reaction time (1.5-5.5 h). The temperature of 100 °C was found to be optimal for the maximum (91%) conversion to methyl esters, while pressure had a positive impact up to 10 bars at 80 °C. The catalyst activation in air leading to the formation of strong basic sites was found to occur at 900 °C. Catalyst particle coalescence took place during the reaction, giving a gum-like structure, and resulted in a significant catalyst deactivation. The pseudo-first order reaction was established, with a “knee” at 80 °C in the Arrhenius plot separating the kinetic and diffusion regimes. During the reaction progress, an activation energy decrease from 161 to 101 kJ/mol, and from 32 to (−3) kJ/mol, was found for the kinetic and diffusion regimes, respectively.  相似文献   

15.
G. Kafuku 《Fuel》2010,89(9):2556-2560
Production of biodiesel from non-edible feedstocks is attracting more attention than in the past, for the purpose of manufacturing alternative fuels without interfering with the food chain. Biodiesel was produced using Croton megalocarpus oil as a non-edible feedstock. C. megalocarpus oil was obtained from north Tanzania. This study aimed at optimizing the biodiesel production process parameters experimentally. The parameters involved in the optimization process were the amount of the catalyst, of alcohol, temperature, agitation speed and reaction time. The optimum biodiesel conversion efficiency obtained was 88% at the optimal conditions of 1.0 wt.% amount of potassium hydroxide catalyst, 30 wt.% amount of methanol, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. The properties of croton biodiesel which were determined fell within the recommended biodiesel standards. Croton oil was found with a free fatty acid content of 1.68% which is below the 2% recommended for the application of the one step alkaline transesterification method. The most remarkable feature of croton biodiesel is its cold flow properties. This biodiesel yielded a cloud and pour point of −4 °C and −9 °C, respectively, while its kinematic viscosity lay within the recommended standard value. This points to the viability of using croton biodiesel in cold regions.  相似文献   

16.
The novel efficient procedure has been developed for the synthesis of biodiesel from soybean oil and methanol. K2CO3 supported on MgO has been selected as the most efficient catalyst for the reaction with the yield of 99%. Operational simplicity, low cost of the catalyst used, high yields, short reaction time and reusability are the key features of this methodology.  相似文献   

17.
A simple continuous process was designed for the transesterification of Jatropha curcas (J. curcas) oil to alkyl esters using microwave-assisted method. The product with purity above 96.5% of alkyl ester is called the biodiesel fuel. Using response surface methodology, a series of experiments with three reaction factors at three levels were carried out to investigate the transesterification reaction in a microwave and conversion of alkyl ester from J. curcas oil with NaOH as the catalyst. The results showed that the ratio of methanol to oil, amount of catalyst and flow rate have significant effects on the transesterification and conversion of alkyl ester. Based on the response surface methodology using the selected operating conditions, the optimal ratio of methanol to oil, amount of catalyst and flow rate of transesterification process were 10.74, 1.26 wt% and 1.62 mL/min, respectively. The largest predicted and experimental conversions of alkyl esters (biodiesel) under the optimal conditions are 99.63% and 99.36%, respectively. Our findings confirmed the successful development of a two-step process for the transesterification reaction of Jatropha oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.  相似文献   

18.
Biodiesel, an alternative diesel fuel derived from vegetable oil, animal fat, or waste vegetable oil (WVO), is obtained by reacting the oil or fat with an alcohol (transesterification) in the presence of a basic catalyst to produce the corresponding mono‐alkyl esters. In this work, the effect of the catalyst KOH‐to‐WVO ratio, ethanol concentration, and time of reaction on the biodiesel yield were investigated. The transesterification reaction was performed at a constant temperature (35 °C) in order to minimize the cost of heating and ethanol evaporation. A 23 complete factorial design on biodiesel yield (Y) was performed using low and high levels of operating variables: KOH concentration (9–14 g/L), ethanol concentration (30–40 vol‐%) and time (30–40 min). The complete factorial model that can be used to fit the data was determined. The model shows that interactions exist among the parameters and that the parameters, or factors, do not operate independently on the response (biodiesel yield). The highest yield was obtained in the first 30 min of reaction time. The results indicate that the highest yield was 78.5 vol‐% using a KOH‐to‐WVO ratio of 12 g/L and 30 vol‐% ethanol. The ASTM tests indicate that the biodiesel properties are within the biodiesel standard limits.  相似文献   

19.
Biodiesel was produced at small scale by transesterification of used frying oil(UFO) recovered from Moroccan pastry shops and fish frying restaurants. Biodiesel was first synthesised at laboratory scale in order to optimize the transesterification parameters. The cost of the final product was also optimized using low-cost raw materials.The UFO and the produced biodiesel were characterized with several techniques including gas chromatography,1H NMR,13 C NMR, FTIR, and TGA–TDA techniques.1H NMR gas chromatographic analyses of the final product confirmed that the transesterification in the chosen experimental conditions was completed. These results were confirmed by TGA–TDA analysis used as new techniques to monitoring triglyceride conversion. The biodiesel did not contain any trace of glycerol, and it did meet the international standards. The transesterification at low cost in small scale conditions was performed at 60 °C using 1.2% of KOH and a methanol/oil molar ratio of 6:1. A yield of 80.8% was achieved. The properties of the produced biodiesel were found to be as good as those of biodiesels obeying to European standards. The biodiesel production was also performed at small-scale for individual utilisation. Thus, the product was tested in a kerosene stove for heating and non-modified commercial diesel engine producing electricity.  相似文献   

20.
Biodiesel produced by vegetable oil transesterification is a potential alternative fuel to diesel regarding the limited resources of fossil fuel and its environmental concerns. In this paper, N-methylimidazole functionalized anion exchange resin (R+-OH) containing NaOH was synthesized through two-step method and applied for transesterification of soybean oil. R+-OH was found to show some polarity due to the functional groups of N-methylimidazole and hydroxyl, and NaOH could be absorbed in R+-OH to form R+OH (Na). Both soybean oil and methanol will be compatible to the partly-polar R+OH (Na), and the reaction will be enhanced by the co-catalysis of R+-OH with NaOH. The properties of R+-OH (Na) were studied, such as ion exchange capacity, stability and microstructure. The influences of the molar ratio of methanol to soybean oil, stirring speed and the amount of R+-OH (Na) were investigated. The conversion of soybean oil was up to 97.25% at the optimal condition: molar ratio of methanol to soybean oil 12:1, the amount of catalyst 2.5%, reaction temperature 50 °C, stirring speed 570 rpm and reaction time 10 h. The co-catalysis of R+-OH with NaOH improved the yield of biodiesel greatly, and R+-OH (Na) could be reused after regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号