首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A. Evdou  L. Nalbandian 《Fuel》2010,89(6):1265-1273
This work reports on the preparation and characterization of perovskitic materials with the general formula La1−xSrxFeO3 (x = 0, 0.3, 0.7, 1) for application in a dense mixed conducting membrane reactor process for simultaneous production of synthesis gas and pure hydrogen. Thermogravimetric experiments indicated that the materials are able to loose and uptake reversibly oxygen from their lattice up to 0.2 oxygen atoms per “mole” for SrFeO3 with x = 1 at 1000 °C. The capability of the prepared powders to convert CH4 during the reduction step, in order to produce synthesis gas, as well as their capability to dissociate water during the oxidation step, in order to produce hydrogen were evaluated by pulse reaction experiments in a fixed bed pulse reactor. The high sintering temperatures (1100-1300 °C) required for the densification of the membrane materials result in decreased methane conversion and H2 yields during the reduction step compared to the corresponding values obtained with the perovskite powders calcined at 1000 °C. Addition of small quantities of NiO, by simple mechanical mixing, to the perovskites after their sintering at high temperatures, increases substantially both their methane decomposition reactivity, their selectivity towards CO and H2 and their water splitting activity. Maximum H2 yield during the reduction step is achieved with the La0.7Sr0.3FeO3 sample mixed with 5% NiO and is 80% of the theoretically expected H2, based on complete methane decomposition. In the oxidation - water splitting step, 912 μmol H2 per gr solid are produced with the La0.3Sr0.7FeO3 sample mixed with 5% NiO. The experimental results of this work can be equally well applied for the “chemical-looping reforming” process since they concern using the lattice oxygen of the perovskite oxides for methane partial oxidation to syngas, in the absence of molecular oxygen, and subsequent oxidation of the solid.  相似文献   

2.
A new autothermal route to produce hydrogen from natural gas via chemical looping technology was investigated. Tests were conducted in a micro-fixed bed reactor loaded with 200 mg of NiO/NiAl2O4 as oxygen carrier. Methane reacts with a nickel oxide in the absence of molecular oxygen at 800 °C for a period of time as high as 10 min. The NiO is subsequently contacted with a synthetic air stream (21% O2 in argon) to reconstitute the surface and combust carbon deposited on the surface. Methane conversion nears completion but to minimize combustion of the hydrogen produced, the oxidation state of the carrier was maintained below 30% (where 100% represents a fully oxidized surface). Co-feeding water together with methane resulted in stable hydrogen production. Although the carbon deposition increased with time during the reduction cycle, the production rate of hydrogen remained virtually constant. A new concept is also presented where hydrogen is obtained from methane with inherent CO2 capture in an energy neutral 3-reactors CFB process. This process combines a methane combustion step where oxygen is provided via an oxygen carrier, a steam methane reforming step catalyzed by the reduced oxygen carrier and an oxidizing step where the O-carrier is reconstituted to its original state.  相似文献   

3.
Chemical-looping technologies have obtained widespread recognition as power or hydrogen production units with inherent carbon capture in a future scenario where CO2 capture and storage (CCS) is reality. In this paper three different techniques are described; chemical-looping combustion and two categories of chemical-looping reforming. The three techniques are all based on oxygen carriers that are circulating between an air- and a fuel reactor, providing the fuel with undiluted oxygen. Two different oxygen carriers; NiO/NiAl2O4 (40/60 wt/wt) and NiO/MgAl2O4 (60/40 wt/wt) are compared. Both continuous and pulse experiments were performed in a batch laboratory fluidized bed working at 950 °C using methane as fuel. It was found that pulse experiments offer advantages in comparison to continuous experiments, particularly when evaluating suitable particles for autothermal chemical-looping reforming. Firstly, smaller conversion ranges can be investigated in more detail, and secondly, the onset and extent of carbon formation can be determined more accurately. Of the two oxygen carriers, NiO/MgAl2O4 offers several advantages at elevated temperatures, i.e. higher methane conversion, higher selectivity to reforming and lesser tendency for carbon formation.  相似文献   

4.
The reactivity of a Ni-based oxygen carrier prepared by hot incipient wetness impregnation (HIWI) on α-Al2O3 with a NiO content of 18 wt% was studied in this work. Pulse experiments with the reduction period divided into 4-s pulses were performed in a fluidized bed reactor at 1223 K using CH4 as fuel. The number of pulses was between 2 and 12. Information about the gaseous product distribution and secondary reactions during the reduction was obtained. In addition to the direct reaction of the combustible gas with the oxygen carrier, CH4 steam reforming also had a significant role in the process, forming H2 and CO. This reaction was catalyzed by metallic Ni in the oxygen carrier and H2 and CO acted as intermediate products of the combustion. No evidence of carbon deposition was found in any case. Redox cycles were also carried out in a thermogravimetric analyzer (TGA) with H2 as fuel. Both tests showed that there was a relation between the solid conversion reached during the reduction and the relative amount of NiO and NiAl2O4 in the oxygen carrier. When solid conversion increased, the NiO content also increased, and consequently NiAl2O4 decreased. Approximately 20% of the reduced nickel was oxidized to NiAl2O4, regardless ΔXs. NiAl2O4 was also an active compound for the combustion reaction, but with lower reactivity than NiO. Further, the consequences of these results with respect to the design of a CLC system were investigated. When formation of NiAl2O4 occurred, the average reactivity in the fuel reactor decreased. Therefore, the presence of both NiO and NiAl2O4 phases must be considered for the design of a CLC facility.  相似文献   

5.
This work is a continuation of a previous paper by the authors [1] which analyzed the suitability of the Chemical Looping technology in biomass tar reforming. Four different oxygen carriers were tested with toluene as tar model compound: 60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg-ZrO2 (Mn40) and FeTiO3 (Fe) and their tendency to carbon deposition was analyzed in the temperature range 873-1073 K. In the present paper, the reactivity of these carriers to other compounds in the gasification gas is studied, also with special emphasis on the tendency to carbon deposition. Experiments were carried out in a TGA apparatus and a fixed bed reactor. Ni-based carriers showed a tendency to form carbon in the reaction with CH4, especially Ni60. The addition of water in H2O/CH4 molar ratios of 0.4-2.3 could decrease the carbon deposited, but not in the case of Ni60. Mn-based sample reacted with CH4 almost completely and with low tendency to carbon deposition, while the Fe-based sample showed low reactivity. Ni40 showed more reactivity to CO than Mn40, although in both cases carbon was deposited, especially at 873 K. When H2 was present, it reacted rapidly with both carriers, decreasing the amount of carbon deposited. The presence of CO2 could also decrease the carbon deposited on Ni40 at 1073 K. According to both these and the previous results [1], it can be concluded that Mn40 is the most adequate for minimization of carbon deposition in Chemical Looping Reforming (CLR).  相似文献   

6.
Chemical Looping Combustion technology involves circulating a metal oxide between a fuel zone where methane reacts under anaerobic conditions to produce a concentrated stream of CO2 and water and an oxygen rich environment where the metal is reoxidized. Although the needs for electrical power generation drive the process to high temperatures, lower temperatures (600–800°C) are sufficient for industrial processes such as refineries. In this paper, we investigate the transient kinetics of NiO carriers in the temperature range of 600 to 900°C in both a fixed bed microreactor (WHSV = 2‐4 g CH4/h/g oxygen carrier) and a fluid bed reactor (WHSV = 0.014‐0.14 g CH4/h per g oxygen carrier). Complete methane conversion is achieved in the fluid bed for several minutes. In the microreactor, the methane conversion reaches a maximum after an initial induction period of less than 10 s. Both CO2 and H2O yields are highest during this induction period. As the oxygen is consumed, methane conversion drops and both CO and H2 yields increase, whereas the CO2 and H2O concentrations decrease. The kinetics parameter of the gas–solids reactions (reduction of NiO with CH4, H2, and CO) together with catalytic reactions (methane reforming, methanation, shift, and gasification) were estimated using experimental data obtained on the fixed bed microreactor. Then, the kinetic expressions were combined with a detailed hydrodynamic model to successfully simulate the comportment of the fluidized bed reactor. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

7.
Four catalysts, consisting of Ni, Ni:Cu, Fe or Fe:Mo as the active phase and Al2O3 or MgO as a textural promoter, were tested for the catalytic decomposition of methane in a rotary bed reactor, obtaining both CO2-free hydrogen and carbon nanostructures in a single step. Hydrogen yields of up to 14.4 Ndm3 H2·(h·gcat)− 1 were obtained using the Ni-based catalysts, and methane conversions above 80% were observed with the Fe-based catalysts. In addition to hydrogen production, the Ni-based catalysts allowed the large-scale production of fishbone-like carbon nanofibres, whereas the use of the Fe-based catalysts promoted the production of carbonaceous filaments having a high degree of structural order, consisting of both chain-like carbon nanofibres and carbon nanotubes.  相似文献   

8.
Ni/MgxTi1 − xO catalysts were prepared through a wet impregnation method by dispersing Ni on MgxTi1 − xO composite oxides obtained via a sol–gel technique. The Ni/MgxTi1 − xO catalysts were characterized by various means including ICP–OES, BET, XRD, H2–TPR, SEM, and TG. No free NiO peak was found in all XRD patterns of the Ni/MgxTi1 − xO catalysts. The H2–TPR and chemisorption results indicated that adding Ti to the NiO–MgO system obstructed the formation of solid solution, and thus increased the reducibility of the catalysts. The prepared MgxTi1 − xO composite oxides had the same ability to disperse Ni as TiO2 and MgO. The tri-reforming (simultaneous oxygen reforming, carbon dioxide reforming, and steam reforming) of methane over Ni/MgxTi1 − xO catalysts was carried out in a fixed bed flow reactor. The conversions of CH4 and CO2 can respectively be achieved as high as above 95% and 83% over Ni/Mg0.75Ti0.25O catalyst under the reaction conditions. The activity of Ni/Mg0.75Ti0.25O and Ni/Mg0.5Ti0.5O did not decrease for a reaction period of 50 h, indicating their rather high stability. The experimental results showed that the nature of support, the interaction between metal and support, and the ability to be reduced played an important role in improving the stability of catalysts.  相似文献   

9.
In this work, an innovative method for gas conditioning in biomass gasification is analyzed. The objective is to remove tar by selectively reforming the unwanted hydrocarbons in the product gas with a chemical looping reformer (CLR), while minimizing the carbon formation during the process. Toluene, in a concentration of 600-2000 ppmv, was chosen as a tar model compound. Experiments were performed in a TGA apparatus and a fixed bed reactor. Four oxygen carriers (60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg-ZrO2 (Mn40) and FeTiO3 (Fe)) were tested under alternating reducing/oxidizing cycles. Several variables affecting the reducing cycle were analyzed: temperature, time for the reduction step and H2O/C7H8 molar ratio. Ni40 and Mn40 presented interesting characteristics for CLR of biomass tar. Both showed stable reactivity to C7H8 after a few cycles. Ni40 showed a high tendency to carbon deposition compared to Mn40, specially at high temperatures. Carbon deposition could be controlled by decreasing the temperature and the time for the reduction step. The addition of water also reduced the amount of carbon deposited, which was completely avoided working with a H2O/C7H8 molar ratio of 26.4.  相似文献   

10.
For gaseous fuel combustion with inherent CO2 capture and low NOx emission, chemical-looping combustion (CLC) may yield great advantages for the savings of energy to CO2 separation and suppressing the effect on the environment. In a chemical-looping combustor, fuel is oxidized by metal oxide medium (oxygen carrier particle) in a reduction reactor. Reduced particles are transported to the oxidation reactor and oxidized by air and recycled to the reduction reactor. The fuel and the air are never mixed, and the gases from the reduction reactor, CO2 and H2O, leave the system as separate streams. The H2O can be easily separated by condensation and pure CO2 is obtained without any loss of energy for separation. In this study, NiO based particles are examined from the viewpoints of reaction kinetics, carbon deposition, and cyclic use (regenerative ability). The purpose of this study is to find appropriate reaction conditions to avoid carbon deposition and achieve high reaction rate (e.g., temperature and maximum carbon deposition-free conversion) and to certify regenerative ability of NiO/bentonite particles. In this study, 5.04% methane was used as fuel and air was used as oxidation gas. The carbon deposition characteristics, reduction kinetics and regenerative ability of oxygen carrier particles were examined by TGA (Thermal Gravimetrical Analyzer).  相似文献   

11.
The reduction and oxidation behaviour of oxygen carrier particles of NiO and NiAl2O4 has been investigated in a fluidized bed reactor as well as a thermogravimetric analyzer (TGA). The particles showed high reactivity and gas yield to CO2 with methane in the temperature interval 750–950°C. In the fluidized bed the yield to CO2 was between 90 and 99% using bed masses corresponding to 16–57 kg/MWfuel. Complementary experiments in a TGA at 750 and 950°C showed a clear reaction of the NiAl2O4 with CH4 at the higher temperature. There was methane released from the reactor at high degrees of solid oxidation, which is likely associated with the lack of Ni‐sites on the particles which can reform the methane. There was some carbon formation during the reduction, although the amount was minor when the gas yield to carbon dioxide and degree of oxidation of the solid was high. A simple reactor model using kinetic data from a previous study predicted the gas yield during the reduction in the fluidized bed experiments with reasonable accuracy. The oxygen carrier system investigated in this work shows high promise for use in a real CLC system, provided that the particle manufacturing process can be scaled up with reasonable cost.  相似文献   

12.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

13.
Nanofilamentous carbon was grown on a carbon foam by catalytic chemical vapour deposition (CVD) using the decomposition of ethylene/hydrogen mixtures over Ni. The carbon foam was obtained from a coal by a two-stage thermal process, with the first stage taking place at a temperature within the plastic region of the precursor coal. The extent of porosity and the pore size of the foam were mainly influenced by the pressure reached in the reactor during the first stage. In the CVD process, 700 °C was the optimum temperature for obtaining good yields of nanofilaments. A low ethylene/hydrogen ratio (1/4) in the reactive gas gave rise to almost only short and thin carbon nanostructures. A higher proportion of C2H4 (4/1, C2H4/H2) gave better yields of nanofilaments, with good proportions of higher-length and higher-diameter (up to around 0.5 μm) structures. Among the carbon forms produced, transmission electron microscopy revealed the predominance of fishbone-type nanofibres, with some bamboo-like nanotubes being also observed.  相似文献   

14.
The catalytic activity of a series of M(= Ni, Co, Cu)/(CeO2)x–(MgO)1  x catalysts for methane combustion was investigated. (CeO2)x–(MgO)1  x supports were prepared by a sol-gel method. The influence of CeO2 content and active components such as Ni, Co and Cu are discussed. The results indicate that the activity of the catalysts depends strongly on CeO2 content. The Ni/(CeO2)0.1 − (MgO)0.9 catalyst showed the highest catalytic activity and good thermal stability for methane combustion. The highly dispersed NiO is the main active site for methane combustion. Fresh M (Ni, Co and Cu)/(CeO2)0.1–(MgO)0.9 catalysts showed that the activity of CuO for methane combustion was slightly higher than that of NiO and CoO, while the thermal stability increased in the order Cu < Co < Ni. Cu/(CeO2)0.1–(MgO)0.9 catalyst was sintered after a second evaluation. Consequently, (CeO2)0.1–(MgO)0.9 is deemed to be a good support for Ni.  相似文献   

15.
S.S. Maluf 《Fuel》2009,88(9):1547-1553
NiO/Al2O3 catalyst precursors were prepared by simultaneous precipitation, in a Ni:Al molar ratio of 3:1, promoted with Mo oxide (0.05, 0.5, 1.0 and 2.0 wt%). The solids were characterized by adsorption of N2, XRD, TPR, Raman spectroscopy and XPS, then activated by H2 reduction and tested for the catalytic activity in methane steam reforming.The characterization results showed the presence of NiO and Ni2AlO4 in the bulk and Ni2AlO4 and/or Ni2O3 and at the surface of the samples.In the catalytic tests, high stability was observed with a reaction feed of 4:1 steam/methane. However, at a steam/methane ratio of 2:1, only the catalyst with 0.05% Mo remained stable throughout the 500 min of the test.The addition of Mo to Ni catalysts may have a synergistic effect, probably as a result of electron transfer from the molybdenum to the nickel, increasing the electron density of the catalytic site and hence the catalytic activity.  相似文献   

16.
The naturally occurring mineral ilmenite, FeTiO3, has been examined as oxygen carrier for chemical-looping combustion. NiO-based particles have been used as an additive, in order to examine if it is possible to utilize the catalytic properties of metallic Ni to facilitate decomposition of hydrocarbons into more reactive combustion intermediates such as CO and H2. Firstly, ilmenite was examined by oxidation and reduction experiments in a batch fluidized-bed reactor. These experiments indicated moderate reactivity between ilmenite and CH4, which was used as reducing gas. However, adding 5 wt.% of NiO-based particles to the ilmenite improved the conversion of CH4 greatly, resulting in an increase in combustion efficiency with a factor of 3. Secondly, 83 h of chemical-looping combustion experiments were conducted in a small circulating fluidized-bed reactor, using ilmenite as oxygen carrier and natural gas as fuel. A wide range of process parameters and different levels of NiO addition were examined. Occasionally, there were problems with the circulation of solids between the air reactor and fuel reactor, but most of the time the experiments worked well. The products were mostly CO2, H2O and unconverted CH4. Adding small amounts of NiO-based particles to the reactor increased the conversion of the fuel considerably. For the base case conducted at 900°, the combustion efficiency was 76% for pure ilmenite and 90% for the corresponding experiments with 1 wt.% NiO-based particles added to the reactor. The properties of ilmenite were found to change considerably during operation. Used particles had lower density, were more reactive and more porous than fresh particles. These changes appear to have been physical, and no unexpected chemical phases could be identified.  相似文献   

17.
S. Pacheco Benito 《Carbon》2010,48(10):2862-538
Carbon nanofibers (CNFs) were deposited on metal foils including nickel (Ni), iron (Fe), cobalt (Co), stainless steel (Fe:Ni; 70:11 wt.%) and mumetal (Ni:Fe; 77:14 wt.%) by the decomposition of C2H4 at 600 °C. The effect of pretreatment and the addition of H2 on the rate of carbon formation, as well the morphology and attachment of the resulting carbon layer were explored. Ni and mumetal show higher carbon deposition rates than the other metals, with stainless steel and Fe the least active. Pretreatment including an oxidation step normally leads to higher deposition rates, especially for Ni and mumetal. Enhanced formation of small Ni particles by in situ reduction of NiO, compared to formation using a Ni carbide, is probably responsible for higher carbon deposition rates after oxidation pretreatment. The addition of H2 during the CNF growth leads to higher carbon deposition rates, especially for oxidized Ni and mumetal, thus enhancing the effect of the reduction of NiO. The diameters of CNFs grown on metal alloys are generally larger compared to those grown on pure metals. Homogenously deposited and well-attached layers of nanotubes are formed when the carbon deposition rate is as low as 0.1-1 mg cm−2 h−1, as mainly occurs on stainless steel.  相似文献   

18.
Production of hydrogen (H2) from catalytic steam reforming of bio-oil was investigated in a fixed bed tubular flow reactor over nickel/alumina (Ni/Al2O3) supported catalysts at different conditions. The features of the steam reforming of bio-oil, including the effects of metal content, reaction temperature, WbHSV (defined as the mass flow rate of bio-oil per mass of catalyst) and S/C ratio (the molar ratio of steam to carbon fed) on the hydrogen yield were investigated. Carbon conversion (moles of carbon in the outlet gases to moles of the carbon feed) was also studied, and the outlet gas distributions were obtained. It was revealed that the Al2O3 with 14.1% Ni content gave the highest yield of hydrogen (73%) among the catalysts tested, and the best carbon conversion was 79% under the steam reforming conditions of S/C = 5, WbHSV = 13 1/h and temperature = 950 °C. The H2 yield increased with increasing temperature and decreasing WbHSV; whereas the effect of the S/C ratio was less pronounced. In the S/C ratio range of 1 to 2, the hydrogen yield was slightly increased, but when the S/C ratio was increased further, it did not have an effect on the H2 production yield.  相似文献   

19.
Supported nickel catalysts with core/shell structures of Ni/Al2O3 and Ni/MgO-Al2O3 were synthesized under multi-bubble sonoluminescence (MBSL) conditions and tested for dry reforming of methane (DRM) to produce hydrogen and carbon monoxide. A supported Ni catalyst made of 10% Ni loading on Al2O3 and MgO-Al2O3, which performed best in the steam reforming of methane (97% methane conversion at 750 °C) and in the partial oxidation of methane (96% methane conversion at 800 °C), showed also good performance in DRM and excellent thermal stability for the first 150 h. The supported Ni catalysts Ni/Al2O3 and Ni/MgO-Al2O3 yielded methane conversions of 92% and 92.5%, respectively and CO2 conversions of 95.0% and 91.8%, respectively, at a reaction temperature of 800 °C with a molar ratio of CH4/CO2 = 1. Those were near thermodynamic equilibrium values.  相似文献   

20.
The development of a nickel composite membrane with acceptable hydrogen permselectivity at high temperature in a membrane reactor for the highly endothermic dry reforming of methane reaction was the purpose of this work. A thin, catalytically inactive nickel layer, deposited by electroless plating on asymmetric porous alumina, behaved simply as a selective hydrogen extractor, shifting the equilibrium in the direction of a higher hydrogen production and methane conversion. The main advantage of such a nickel/ceramic membrane reactor is the elimination or limitation of the side reverse water gas shift reaction. For a Ni/Al2O3 catalyst, containing free Ni particles, normally sensitive to coking, the use of the membrane reactor allowed an important reduction of carbon deposition (nanotubes) due to restriction of the Boudouard reaction. For a Ni–Co/Al2O3 catalyst, where the metallic nickel phase was stabilized by the alumina, the selective removal of the hydrogen significantly enhanced both methane conversion (+67% at 450 °C, +22% at 500 °C and +18% at 550 °C) and hydrogen production (+42% at 450 °C, +32% at 500 °C and +22% at 550 °C) compared to the results obtained for a packed-bed reactor. The hydrogen selectivity during the catalytic tests at 550 °C, maintained with constant separation factors (7 for H2/CH4, 8 for H2/CO and 10 for H2/CO2), higher than Knudsen values, attested to the high thermal stability of the nickel composite membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号